Skip to main content
Log in

A Novel 3,6-anhydro-L-galactose Dehydrogenase Produced by a Newly Isolated Raoultella ornithinolytica B6-JMP12

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Despite an increasing potential of red algal biomass as a feedstock, biological conversion of red algal biomass has been limited by lack of feasible microorganisms which can convert structured AHG, which is a main component of red algal carbohydrate, into a common metabolite. In the AHG uptake pathway, AHG dehydrogenase (AHGD) is known to be a key step, therefore it is important to find an efficient dehydrogenase to break down 3,6- anhydro-L-galactose (AHG) for practical use of red macroalgae biomass in biorefineries requires. In this study, we isolate a novel AHG dehydrogenase (AHGD) with high activity produced by a newly isolated bacteria strain, Raoultella ornithinolytica B6–JMP12. The stability and compatibility of the enzyme were evaluated under various conditions to achieve high enzyme production. The AHGD was partially purified using conventional protein purification techniques such as ammonium sulfate precipitation and ion exchange followed by gel filtration chromatography, 37.24 fold with a final specific activity of 5.47 U/mg of protein with 32% yield recovery. SDS-PAGE was used to determine the molecular weight of the partially purified AHGD and its molecular weight was found to be around ~34 kDa. The optimal pH and temperature for the partially purified AHGD were 7.0 and 35°C, respectively. The Km and Vmax for 3,6-anhydro-L-galactose are 0.63 mg/mL and 0.38 μM/mL/min, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamm, B. and M. Kamm (2004) Principles of biorefineries. Appl. Microbiol. Biotechnol. 64: 137–145.

    Article  CAS  Google Scholar 

  2. Goh, C. S. and K. T. Lee (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Ren. Sustain. Energy Re. 14: 842–848.

    Article  CAS  Google Scholar 

  3. Kawai, S. and K. Murata (2016) Biofuel production based on carbohydrates from both brown and red macroalgae: Recent developments in key biotechnologies. Internat. J. Mol. Sci. 17: 145.

    Article  Google Scholar 

  4. Duckworth, M. and W. Yaphe (1971) The structure of agar. Carbohyd. Res. 16: 189–197.

    Article  CAS  Google Scholar 

  5. van Rooyen, R., B. Hahn-Hagerdal, D. C. La Grange, and W. H. van Zyl (2005) Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J. Biotechnol. 120: 284–295.

    Article  Google Scholar 

  6. Lindén, T., J. Peetre, and B. Hahn-Hägerdal (1992) Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl. Environ. Microbiol. 58: 1661–1669.

    Google Scholar 

  7. Yanase, H., H. Fukushi, N. Ueda, Y. Maeda, A. Toyoda, and K. Tonomura (1991) Cloning, sequencing, and characterization of the intracellular invertase gene from Zymomonas mobilis. Agricult. Biol. Chem. 55: 1383–1390.

    CAS  Google Scholar 

  8. Jol, C. N., T. G. Neiss, B. Penninkhof, B. Rudolph, and G. A. De Ruiter (1999) A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3,6-anhydrogalactose. Anal. Biochem. 268: 213–222.

    Article  CAS  Google Scholar 

  9. Lee, D.-G., G.-T. Park, N. Y. Kim, E.-J. Lee, M. K. Jang, Y. G. Shin, G.-S. Park, T.-M. Kim, J.-H. Lee, J. H. Lee, S.-J. Kim, and S.-H. Lee (2006) Cloning, expression, and characterization of a glycoside hydrolase family 50 β-agarase from a marine Agarivorans isolate. Biotechnol. Lett. 28: 1925–1932.

    Article  CAS  Google Scholar 

  10. Ohta, Y., Y. Hatada, S. Ito, and K. Horikoshi (2005) High-level expression of a neoagarobiose-producing beta-agarase gene from Agarivorans sp. JAMB-A11 in Bacillus subtilis and enzymic properties of the recombinant enzyme. Biotechnol. Appl. Biochem. 41: 183–191.

    Article  CAS  Google Scholar 

  11. Ohta, Y., Y. Hatada, Y. Nogi, Z. Li, S. Ito, and K. Horikoshi (2004) Cloning, expression, and characterization of a glycoside hydrolase family 86 beta-agarase from a deep-sea Microbulbiferlike isolate. Appl. Microbiol. Biotechnol. 66: 266–275.

    Article  CAS  Google Scholar 

  12. Ohta, Y., Y. Nogi, M. Miyazaki, Z. Li, Y. Hatada, S. Ito, and K. Horikoshi (2004) Enzymatic properties and nucleotide and amino acid sequences of a thermostable beta-agarase from the novel marine isolate, JAMB-A94. Biosci. Biotechnol. Biochem. 68: 1073–1081.

    Article  CAS  Google Scholar 

  13. Ma, C., X. Lu, C. Shi, J. Li, Y. Gu, Y. Ma, Y. Chu, F. Han, Q. Gong, and W. Yu (2007) Molecular cloning and characterization of a novel beta-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. The J. Biol. Chem. 282: 3747–3754.

    Article  CAS  Google Scholar 

  14. Ha, J.-C., G.-T. Kim, S.-K. Kim, T. K. Oh, J.-H. Yu, and I.-S. Kong (1997) β-Agarase from Pseudomonas sp. W7: Purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnol. Appl. Biochem. 26: 1–6.

    CAS  Google Scholar 

  15. Lee, S.-B., J.-H. Park, S.-C. Yoon, J.-M. Kim, and I.-S. Kong (2000) Sequence analysis of a β-agarase gene (pjaA) from Pseudomonas sp. isolated from marine environment. J. Biosci. Bioeng. 89: 485–488.

    Article  CAS  Google Scholar 

  16. Sugano, Y., I. Terada, M. Arita, M. Noma, and T. Matsumoto (1993) Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 1549–1554.

    CAS  Google Scholar 

  17. Quemener, B. and M. Lahaye (1998) Comparative analysis of sulfated galactans from red algae by reductive hydrolysis and mild methanolysis coupled to two different HPLC techniques. J. Appl. Phycol. 10: 75.

    Article  CAS  Google Scholar 

  18. Kendall, K. and J. Cullum (1984) Cloning and expression of an extracellular-agarase from Streptomyces coelicolor A3(2) in Streptomyces lividans 66. Gene 29: 315–321.

    Article  CAS  Google Scholar 

  19. Jam, M., D. Flament, J. Allouch, P. Potin, L. Thion, B. Kloareg, M. Czjzek, W. Helbert, G. Michel, and T. Barbeyron (2005) The endo-beta-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: Two paralogue enzymes with different molecular organizations and catalytic behaviours. The Biochem. J. 385: 703–713.

    Article  CAS  Google Scholar 

  20. Roh, H., E. J. Yun, S. Lee, H. J. Ko, S. Kim, B. Y. Kim, H. Song, K. I. Lim, K. H. Kim, and I. G. Choi (2012) Genome sequence of Vibrio sp. strain EJY3, an agarolytic marine bacterium metabolizing 3,6-anhydro-L-galactose as a sole carbon source. J. Bacteriol. 194: 2773–2774.

    Article  CAS  Google Scholar 

  21. Yun, E. J., S. Lee, H. T. Kim, J. G. Pelton, S. Kim, H. J. Ko, I. G. Choi, and K. H. Kim (2015) The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ. Microbiol. 17: 1677–1688.

    Article  CAS  Google Scholar 

  22. Lee, S. B., J. A. Kim, and H. S. Lim (2016) Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Appl. Microbiol.Biotechnol. 100: 4109–4121.

    Article  CAS  Google Scholar 

  23. Paul De Vos, E. (2009) Bergey’s manual of systematic bacteriology. Volume three. The firmicutes. Second edition. Dordrecht, New York, Springer.

    Google Scholar 

  24. Kademi, A., N. Aït-Abdelkader, L. Fakhreddine, and J. Baratti (2000) Purification and characterization of a thermostable esterase from the moderate thermophile Bacillus circulans. Appl. Microbiol. Biotechnol. 54: 173–179.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  26. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  27. Ye, F., X. Yan, J. Xu, and H. Chen (2006) Determination of aldoses and ketoses by GC-MS using differential derivatisation. Phytochem. Anal.: PCA. 17: 379–383.

    Article  CAS  Google Scholar 

  28. O'Neill, A. N. and D. K. R. Stewart (1956) On the structure of agar from gelidium cartilaginium. Can. J. Chem. 34: 1700–1703.

    Article  Google Scholar 

  29. Navarro, D. A. and C. A. Stortz (2003) Determination of the configuration of 3,6-anhydrogalactose and cyclizable alphagalactose 6-sulfate units in red seaweed galactans. Carbohyd. Res. 338: 2111–2118.

    Article  CAS  Google Scholar 

  30. Lineweaver, H. and D. Burk (1934) The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658–666.

    Article  CAS  Google Scholar 

  31. Kim, K. H., I. G. Choi, E. J. Yun, and S. Y. LEE (2014) Marine bacterium of metabolizing 3,6-anhydro-L-galactose and use of the same. US Patent 8,771,996B2.

    Google Scholar 

  32. Lee, S. B., S. J. Cho, J. A. Kim, S. Y. Lee, S. M. Kim, and H. S. Lim (2014) Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioproc. Eng. 19: 866–878.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Moon Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y.R., Jung, K.A., Lee, H.J. et al. A Novel 3,6-anhydro-L-galactose Dehydrogenase Produced by a Newly Isolated Raoultella ornithinolytica B6-JMP12. Biotechnol Bioproc E 23, 64–71 (2018). https://doi.org/10.1007/s12257-017-0480-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0480-x

Keywords

Navigation