Skip to main content
Log in

Long-term viability of photosynthetic cells stacked in a hydrogel film within a polydimethylsiloxane microfluidic device

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Immobilizing cells while maintaining their long-term viability is important to utilize cells in biosensors and energy devices. In this study, we fabricated a hydrogel film of 10 μm thickness immobilizing photosynthetic cells, using a polydimethylsiloxane microfluidic device, and we monitored the viability of the cells for 30 days. Cell viability was measured by chronoamperometry using two electrodes located in the microfluidic device and was compared between hydrogel-immobilized and non-immobilized cells. The non-immobilized cells showed variation in viability. In contrast, the hydrogel-immobilized cells remained viable for 30 days. A simulation of the oxygen distribution changes by photosynthesis of the cells and mass transfer of cell culture nutrients (NaNO3) suggested that a proper environment for cell survival was effectively established inside the hydrogel. We successfully fabricated a photosynthetic cell-laden hydrogel with potential use in next-generation photosynthesis-based solar cells and sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buenger, D., F. Topuz, and J. Groll (2012) Hydrogels in sensing applications. Prog. Polym. Sci. 37: 1678–1719.

    Article  CAS  Google Scholar 

  2. Kim, J., K. Yang, H. J. Park, S. W. Cho, S. Han, Y. Shin, S. Chung, and J. H. Lee (2014) Implantable microfluidic device for the formation of three-dimensional vasculature by human endothelial progenitor cells. Biotechnol. Bioproc. Eng. 19: 379–385.

    Article  CAS  Google Scholar 

  3. Heller, A. (2006) Electron-conducting redox hydrogels: Design, characteristics and synthesis. Curr. Opin. Chem. Biol. 10: 664–672.

    Article  CAS  Google Scholar 

  4. Jen, A. C., M. C. Wake, and A. G. Mikos (1996) Review: Hydrogels for cell immobilization. Biotechnol. Bioeng. 50: 357–364.

    Article  CAS  Google Scholar 

  5. Liu, X. W., Y. X. Huang, X. F. Sun, G. P. Sheng, F. Zhao, S. G. Wang, and H. Q. Yu (2014) Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. Acs Appl. Mater. Inter. 6: 8158–8164.

    Article  CAS  Google Scholar 

  6. Liu, X. W., Y. P. Wang, Y. X. Huang, X. F. Sun, G. P. Sheng, R. J. Zeng, F. Li, F. Dong, S. G. Wang, Z. H. Tong, and H. Q. Yu (2011) Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: Taking a sequencing batch reactor as an example. Biotechnol. Bioeng. 108: 1260–1267.

    Article  CAS  Google Scholar 

  7. Qiao, X. L., Z. Liu, Z. W. Liu, Y. L. Zeng, and Z. J. Zhang (2010) Immobilization of activated sludge in poly(ethylene glycol) by UV technology and its application in micro-polluted wastewater. Biochem. Eng. J. 50: 71–76.

    Article  Google Scholar 

  8. Chen, Y. P., Y. Zhao, K. Q. Qiu, J. Chu, R. Lu, M. Sun, X. W. Liu, G. P. Sheng, H. Q. Yu, J. Chen, W. J. Li, G. Liu, Y. C. Tian, and Y. Xiong (2011) An innovative miniature microbial fuel cell fabricated using photolithography. Biosens. Bioelectron. 26: 2841–2846.

    Article  CAS  Google Scholar 

  9. Lee, N. Y., Y. K. Jung, and H. G. Park (2006) On-chip colorimetric biosensor based on polydiacetylene (PDA) embedded in photopolymerized poly(ethylene glycol) diacrylate (PEG-DA) hydrogel. Biochem. Eng. J. 29: 103–108.

    Article  CAS  Google Scholar 

  10. Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomat. 31: 5536–5544.

    Article  CAS  Google Scholar 

  11. Zorlutuna, P., N. Annabi, G. Camci-Unal, M. Nikkhah, J. M. Cha, J. W. Nichol, A. Manbachi, H. J. Bae, S. C. Chen, and A. Khademhosseini (2012) Microfabricated biomaterials for engineering 3D tissues. Adv. Mater. 24: 1782–1804.

    Article  CAS  Google Scholar 

  12. Albrecht, D. R., V. L. Tsang, R. L. Sah, and S. N. Bhatia (2005) Photo-and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5: 111–118.

    Article  CAS  Google Scholar 

  13. Lee, N. Y., J. R. Lim, M. J. Lee, J. B. Kim, S. J. Jo, H. K. Baik, and Y. S. Kim (2006) Hydrophilic composite elastomeric mold for high-resolution soft lithography. Langmuir 22: 9018–9022.

    Article  CAS  Google Scholar 

  14. Chan, V., J. H. Jeong, P. Bajaj, M. Collens, T. Saif, H. Kong, and R. Bashir (2012) Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. Lab Chip 12: 88–98.

    Article  CAS  Google Scholar 

  15. Lee, D. H., H. J. Oh, S. J. Bai, and Y. S. Song (2014) Photosynthetic solar cell using nanostructured proton exchange membrane for microbial biofilm prevention. Acs Nano 8: 6458–6465.

    Article  CAS  Google Scholar 

  16. Morishima, K., Y. Tanaka, M. Ebara, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, and T. Kitamori (2006) Demonstration of a bio-microactuator powered by cultured cardiomyocytes coupled to hydrogel micropillars. Sensor Actuat. B-Chem. 119: 345–350.

    Article  CAS  Google Scholar 

  17. Chen, S., J. J. Duan, M. Jaroniec, and S. Z. Qiao (2014) Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. Adv. Mater. 26: 2925–2930.

    Article  CAS  Google Scholar 

  18. Giraldo, J. P., M. P. Landry, S. M. Faltermeier, T. P. McNicholas, N. M. Iverson, A. A. Boghossian, N. F. Reuel, A. J. Hilmer, F. Sen, J. A. Brew, and M. S. Strano (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13: 530–530.

    Article  CAS  Google Scholar 

  19. Xu, H., J. Wu, C. C. Chu, and M. L. Shuler (2012) Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells. Biomed. Microdev. 14: 409–418.

    Article  CAS  Google Scholar 

  20. Park, J. H., Y. S. Song, J. G. Ha, Y. K. Kim, S. K. Lee, and S. J. Bai (2013) Electrochemical sensing of high density photosynthetic cells using a microfluidic chip. Sensor Actuat. B-Chem 188: 1300–1305.

    Article  CAS  Google Scholar 

  21. Ha, J. G., Y. S. Song, S. Jung, S. Jang, Y. K. Kim, S. J. Bai, J. H. Park, and S. K. Lee (2017) Novel microbial photobioelectrochemical cell using an invasive ultramicroelectrode array and a microfluidic chamber. Biotechnol. Lett. 39: 849–855.

    Article  CAS  Google Scholar 

  22. Ryu, W., S. J. Bai, J. S. Park, Z. B. Huang, J. Moseley, T. Fabian, R. J. Fasching, A. R. Grossman, and F. B. Prinz (2010) Direct extraction of photosynthetic electrons from single algal cells by nanoprobing system. Nano Lett. 10: 1137–1143.

    Article  CAS  Google Scholar 

  23. Bong, K. W., J. J. Kim, H. S. Cho, E. Lim, P. S. Doyle, and D. Irimia (2015) Synthesis of cell-adhesive anisotropic multifunctional particles by stop flow lithography and streptavidin-biotin interactions. Langmuir 31: 13165–13171.

    Article  CAS  Google Scholar 

  24. Zanke, B. W., K. Boudreau, E. Rubie, E. Winnett, L. A. Tibbles, L. Zon, J. Kyriakis, F. F. Liu, and J. R. Woodgett (1996) The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr. Biol.: CB 6: 606–613.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoung Jai Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, SG., Bai, S.J. Long-term viability of photosynthetic cells stacked in a hydrogel film within a polydimethylsiloxane microfluidic device. Biotechnol Bioproc E 22, 474–480 (2017). https://doi.org/10.1007/s12257-017-0194-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0194-0

Keywords

Navigation