Skip to main content
Log in

Reconstruction of methanol and formate metabolic pathway in non-native host for biosynthesis of chemicals and biofuels

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

One-carbon feedstock such as methanol and formate has attracted much attention as carbon substrate of industrial biotechnology for production of value-added chemicals and biofuels. Productivity improvement of natural one-carbon metabolic pathways in native hosts such as methanotrophs is somewhat difficult due to inefficient genetic tools and low specific growth rate. As an alternative, metabolic engineering can create new and efficient metabolic pathways of one-carbon substrate that can be readily transferred to non-native hosts. In this paper, recent progresses in protein and metabolic engineering for creation of methanol and formate-utilizing synthetic pathways based on RuMP cycle and formolase are reviewed. Perspectives on one-carbon metabolic pathway engineering in non-native host are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haynes, C. A. and R. Gonzalez (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10: 331–339.

    Article  CAS  Google Scholar 

  2. Kalyuzhnaya, M. G., A. W. Puri, and M. E. Lidstrom (2015) Metabolic engineering in methanotrophic bacteria. Metab. Eng. 29: 142–152.

    Article  CAS  Google Scholar 

  3. Hwang, I. Y., S. H. Lee, Y. S. Choi, S. J. Park, J. G. Na, I. S. Chang, C. Kim, H. C. Kim, Y. H. Kim, J. W. Lee, and E. Y. Lee (2014) Biocatalytic conversion of methane to methanol as a key step for development of methane-based biorefineries. J. Microbiol. Biotechnol. 24: 1597–1605.

    Article  CAS  Google Scholar 

  4. Lloyd, J. S., P. D. Marco, H. Dalton, and J. C. Murrell (1999) Heterologous expression of soluble methane monooxygenase genes in methanotrophs containing only particulate methane monooxygenase. Arch. Microbiol. 171: 364–370.

    Article  CAS  Google Scholar 

  5. Murrell, J. C. (2002) Expression of soluble methane monooxygenase genes. Microbiol. 148: 3329–3330.

    Article  CAS  Google Scholar 

  6. Wood, T. K. (2002) Active expression of soluble methane monooxygenase from Methylosinus trichosporium OB3b in heterologous hosts. Microbiol. 148: 3328–3329.

    Article  CAS  Google Scholar 

  7. Gou, Z., X. H. Xing, M. Luo, H. Jiang, B. Han, H. Wu, and F. Zhang (2006) Functional expression of the particulate methane mono-oxygenase gene in recombinant Rhodococcus erythropolis. FEMS Microbiol. Lett. 263: 136–141.

    Article  CAS  Google Scholar 

  8. Han, B., T. Su, C. Yang, H. Jiang, H. Wu, C. Zhang, X. Li, and X. Xing (2009) Heterologous expression of particulate methane monooxygenase in different host cells. Chin. J. Biotechnol. 25: 1151–1159.

    CAS  Google Scholar 

  9. Murrell, J. C., B. Gilbert, and I. R. McDonald (2000) Molecular biology and regulation of methane monooxygenase. Arch. Microbiol. 173: 325–332.

    Article  CAS  Google Scholar 

  10. Smith, S. M., R. Balasubramanian, and A. C. Rosenzweig (2011) Metal reconstitution of particulate methane monooxygenase and heterologous expression of the pmoB subunit. Meth. Enzymol. 495: 195–210.

    Article  CAS  Google Scholar 

  11. Zilly, F. E., J. P. Acevedo, W. Augustyniak, A. Deege, U. W. Häusig, and M. T. Reetz (2011) Tuning a P450 enzyme for methane oxidation. Angew. Chem. Int. Edit. 123: 2772–2776.

    Article  Google Scholar 

  12. Meinhold, P., M. W. Peters, M. M. Y. Chen, K. Takahashi, and F. H. Arnold (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. ChemBioChem. 10: 1765–1768.

    Article  Google Scholar 

  13. Schrader, J., M. Schilling, D. Holtmann, D. Sell, M. V. Filho, A. Marx, and J. A. Vorholt (2009) Methanol-based industrial biotechnology: Current status and future perspectives of methylotrophic bacteria. Trends Biotechnol. 27: 107–115.

    Article  CAS  Google Scholar 

  14. Kim, S. W., P. Kim, H. S. Lee, and J. H. Kim (1996) High production of poly-ß-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol. Lett. 18: 25–30.

    Article  CAS  Google Scholar 

  15. Zhao, S., C. Fan, X. Hu, J. Chen, and H. Feng (1993) The microbial production of polyhydroxybutyrate from methanol. Appl. Biochem. Biotechnol. 39: 191–199.

    Article  Google Scholar 

  16. Koopman, F. W., J. H. De Winde, and H. J. Ruijssenaars (2009) C1 compounds as auxiliary substrate for engineered Pseudomonas putida S12. Appl. Microbiol. Biotechnol. 83: 705–713.

    Article  CAS  Google Scholar 

  17. Müller, J. E., F. Meyer, B. Litsanov, P. Kiefer, E. Potthoff, S. Heux, W. J. Quax, V. F. Wendisch, T. Brautaset, J. C. Portais, and J. A. Vorholt (2015) Engineering Escherichia coli for methanol conversion. Metab. Eng. 28: 190–201.

    Article  Google Scholar 

  18. Witthoff, S., K. Schmitz, S. Niedenführ, K. Nöh, S. Noack, M. Bott, and J. Marienhagen (2015) Metabolic engineering of Corynebacterium glutamicum for methanol metabolism. Appl. Environ. Microbiol. 81: 2215–2225.

    Article  CAS  Google Scholar 

  19. Leßmeier, L., J. Pfeifenschneider, M. Carnicer, S. Heux, J. C. Portais, and V. F. Wendisch (2015) Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl. Microbiol. Biotechnol. 99: 10163–10176.

    Article  Google Scholar 

  20. Siegel, J. B., A. L. Smith, S. Poust, A. J. Wargacki, A. Bar-Even, C. Louw, B. W. Shen, C. B. Eiben, H. M. Tran, E. Noor, J. L. Gallaher, J. Bale, Y. Yoshikuni, M. H. Gelb, J. D. Keasling, B. L. Stoddard, M. E. Lidstrom, and D. Baker (2015) Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl. Acad. Sci. USA. 112: 3704–3709.

    CAS  Google Scholar 

  21. Tai, Y. S. and K. Zhang (2015) Enzyme pathways: C1 metabolism redesigned. Nat. Chem. Biol. 11: 384–386.

    Article  CAS  Google Scholar 

  22. Kang, T. J. and E. Y. Lee (2016) Metabolic versatility of microbial methane oxidation for biocatalytic methane conversion. J. Ind. Eng. Chem. 35: 8–13

    Article  CAS  Google Scholar 

  23. Anthony, C. (1982) The biochemistry of methylotrophs. Academic Press, NY, USA.

    Google Scholar 

  24. Kalyuzhnaya, M. G., S. Yang, O.N. Rozova, N. E. Smalley, J. Clubb, A. Lamb, G. A. Nagana Gowda, D. Raftery, Y. Fu, F. Bringel, S. Vuilleumier, C. A. C. Bck, Y. A. Trotsenko, V. N. Khmelenina, and M. E. Lidstrom (2013). Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4: 2785.

    Article  CAS  Google Scholar 

  25. Torre, A., A. Metivier, F. Chu, L. M. Laurens, D. A. Beck, P. T. Pienkos, M. E. Lidstrom, and M. G. Kalyuzhnaya (2015) Genome-scale metabolic reconstructions and theoretical investigation of methane conversion in Methylomicrobium buryatense strain 5G (B1). Microb. Cell Fact. 14:188.

    Article  Google Scholar 

  26. Anthony, C. (2011) How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway. Sci. Prog. 94: 109–137.

    Article  CAS  Google Scholar 

  27. Chistoserdova, L. (2011) Modularity of methylotrophy, revisited. Environ. Microbiol. 13: 2603–2622.

    Article  CAS  Google Scholar 

  28. Whitaker W. B., N. R. Sandoval, R. K. Bennett, A. G. Fast, and E. T. Papoutsakis (2015) Synthetic methylotrophy: Engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization. Curr. Opin. Biotechnol. 33: 165–175.

    Article  CAS  Google Scholar 

  29. Krog, A., T. M. Heggeset, J. E. Müller, C. E. Kupper, O. Schneider, J. A. Vorholt, T. E. Ellingsen, and T. Brautaset (2013) Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PloS One 8: e59188.

    Article  CAS  Google Scholar 

  30. Jakobsen, Ø. M., A. Benichou, M. C. Flickinger, S. Valla, T. E. Ellingsen, and T. Brautaset (2006) Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus. J. Bacteriol. 188: 3063–3072.

    Article  CAS  Google Scholar 

  31. Chen X., L. Zhou, K. Tian, A. Kumar, S. Singh, B. A. Prior, and Z. Wang (2013) Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production. Biotechnol. Adv. 31: 1200–1223.

    Article  CAS  Google Scholar 

  32. Park J. H., K. H. Lee, T. Y. Kim, and S. Y. Lee (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA. 104: 7797–7802.

    Article  CAS  Google Scholar 

  33. Chae T. U., W. J. Kim, S. Choi, S. J. Park, and S. Y. Lee (2015) Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci. Rep. 5: 13040.

    Article  CAS  Google Scholar 

  34. Choi Y. J. and S. Y. Lee (2013) Microbial production of shortchain alkanes. Nature 502: 571–574.

    Article  CAS  Google Scholar 

  35. Keasling J. D. (2012) Synthetic biology and the development of tools for metabolic engineering. Metab. Eng. 14: 189–195.

    Article  CAS  Google Scholar 

  36. Zhang X., C. J. Terv, and J. L. Reed (2016) Metabolic assessment of E. coli as a biofactory for commercial products. Metab. Eng. 35: 64–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun Yeol Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, A.D., Hwang, I.Y., Chan, J.Y. et al. Reconstruction of methanol and formate metabolic pathway in non-native host for biosynthesis of chemicals and biofuels. Biotechnol Bioproc E 21, 477–482 (2016). https://doi.org/10.1007/s12257-016-0301-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0301-7

Keywords

Navigation