Skip to main content
Log in

Influence of storage condition on exosome recovery

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Most of mammalian cells release extracellular vesicles including exosomes which mediate intercellular communication by delivering a variety of molecules. Despite of their importance in normal physiology and disease progression, the standard criteria of storage condition is indefinite and controversial. Therefore, we investigated exosome’s recovery yield and stability by various storage conditions. To investigate the effect of short-term storage temperature on exosome stability, exosomes were incubated at temperatures ranging from -70 to 90°C for 30 min. Immunoblot results showed that all exosome-associated proteins incubated at 90°C were mostly degraded for a short period of time. To examine the effect of long-term storage, isolated exosomes were incubated for 10 days at from -70°C to room temperature (RT), and exosomal protein, RNA and exosome markers were examined. Protein and RNA amounts were most reduced at RT compared with -70 and 4°C. Incubation at 4°C and RT resulted in major loss of CD63, and decreasing level of HSP70 was shown at only RT. In addition, flow cytometry result showed that exosome population became more dispersed after RT incubation for 10 days compared with -70°C incubated or freshly isolated exosomes. In summary, our results indicate that different storage temperature and period influences recovery yield and morphology of exosome, and storage at below -70°C is the favorable condition for preservation of fresh exosomes for clinical application and basic researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. George, J. N., L. L. Thoi, L. M. McManus, and T. A. Reimann (1982) Isolation of human platelet membrane microparticles from plasma and serum. Blood 60: 834–840.

    CAS  Google Scholar 

  2. Pan, B. T. and R. M. Johnstone (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 33: 967–978.

    Article  CAS  Google Scholar 

  3. Lakkaraju, A. and E. Rodriguez-Boulan (2008) Itinerant exosomes: Emerging roles in cell and tissue polarity. Trends Cell Biol. 18: 199–209.

    Article  CAS  Google Scholar 

  4. Thery, C., S. Amigorena, G. Raposo, and A. Clayton (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. Chapter 3: Unit 322.

    Google Scholar 

  5. Gupta, S. K., C. Bang, and T. Thum (2010) Circulating microRNAs as biomarkers and potential paracrine mediators of cardiovascular disease. Circ. Cardiovasc. Genet. 3: 484–488.

    Article  CAS  Google Scholar 

  6. Tsujiura, M., D. Ichikawa, S. Komatsu, A. Shiozaki, H. Takeshita, T. Kosuga, H. Konishi, R. Morimura, K. Deguchi, H. Fujiwara, K. Okamoto, and E. Otsuji (2010) Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer. 102: 1174–1179.

    Article  CAS  Google Scholar 

  7. Zhou, H., P. S. Yuen, T. Pisitkun, P. A. Gonzales, H. Yasuda, J. W. Dear, P. Gross, M. A. Knepper, and R. A. Star (2006) Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 69: 1471–1476.

    Article  CAS  Google Scholar 

  8. Michael, A., S. D. Bajracharya, P. S. Yuen, H. Zhou, R. A. Star, G. G. Illei, and I. Alevizos (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 16: 34–38.

    Article  CAS  Google Scholar 

  9. Zeelenberg, I. S., M. Ostrowski, S. Krumeich, A. Bobrie, C. Jancic, A. Boissonnas, A. Delcayre, J. B. Le Pecq, B. Combadiere, S. Amigorena, and C. Thery (2008) Targeting tumor antigens to secreted membrane vesicles in vivo induces efficient antitumor immune responses. Cancer Res. 68: 1228–1235.

    Article  CAS  Google Scholar 

  10. Valadi, H., K. Ekstrom, A. Bossios, M. Sjostrand, J. J. Lee, and J. O. Lotvall (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9: 654–659.

    Article  CAS  Google Scholar 

  11. Pegtel, D. M., K. Cosmopoulos, D. A. Thorley-Lawson, M. A. van Eijndhoven, E. S. Hopmans, J. L. Lindenberg, T. D. de Gruijl, T. Wurdinger, and J. M. Middeldorp (2010) Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci. USA. 107: 6328–6333.

    Article  CAS  Google Scholar 

  12. Park, J. E., H. S. Tan, A. Datta, R. C. Lai, H. Zhang, W. Meng, S. K. Lim, and S. K. Sze (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol. Cell Proteomics. 9: 1085–1099.

    Article  CAS  Google Scholar 

  13. Webber, J., R. Steadman, M. D. Mason, Z. Tabi, and A. Clayton (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res. 70: 9621–9630.

    Article  CAS  Google Scholar 

  14. Yu, S., C. Liu, K. Su, J. Wang, Y. Liu, L. Zhang, C. Li, Y. Cong, R. Kimberly, W. E. Grizzle, C. Falkson, and H. G. Zhang (2007) Tumor exosomes inhibit differentiation of bone marrow dendritic cells. J. Immunol. 178: 6867–6875.

    Article  CAS  Google Scholar 

  15. Rajendran, L., M. Honsho, T. R. Zahn, P. Keller, K. D. Geiger, P. Verkade, and K. Simons (2006) Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc. Natl. Acad. Sci. USA. 103: 11172–11177.

    Article  CAS  Google Scholar 

  16. Saman, S., W. Kim, M. Raya, Y. Visnick, S. Miro, S. Saman, B. Jackson, A. C. McKee, V. E. Alvarez, N. C. Lee, and G. F. Hall (2012) Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 287: 3842–3849.

    Article  CAS  Google Scholar 

  17. Fevrier, B., D. Vilette, F. Archer, D. Loew, W. Faigle, M. Vidal, H. Laude, and G. Raposo (2004) Cells release prions in association with exosomes. Proc. Natl. Acad. Sci. USA. 101: 9683–9688.

    Article  CAS  Google Scholar 

  18. Vella, L. J., D. L. Greenwood, R. Cappai, J. P. Scheerlinck, and A. F. Hill (2008) Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet. Immunol. Immunopathol. 124: 385–393.

    Article  CAS  Google Scholar 

  19. Arslan, F., R. C. Lai, M. B. Smeets, L. Akeroyd, A. Choo, E. N. Aguor, L. Timmers, H. V. van Rijen, P. A. Doevendans, G. Pasterkamp, S. K. Lim, and D. P. de Kleijn (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 10: 301–312.

    Article  CAS  Google Scholar 

  20. Deregibus, M. C., V. Cantaluppi, R. Calogero, M. Lo Iacono, C. Tetta, L. Biancone, S. Bruno, B. Bussolati, and G. Camussi (2007) Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 110: 2440–2448.

    Article  CAS  Google Scholar 

  21. Katsuda, T., R. Tsuchiya, N. Kosaka, Y. Yoshioka, K. Takagaki, K. Oki, F. Takeshita, Y. Sakai, M. Kuroda, and T. Ochiya (2013) Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci. Rep. 3: 1197.

    Article  Google Scholar 

  22. Sahoo, S., E. Klychko, T. Thorne, S. Misener, K. M. Schultz, M. Millay, A. Ito, T. Liu, C. Kamide, H. Agrawal, H. Perlman, G. Qin, R. Kishore, and D. W. Losordo (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ. Res. 109: 724–728.

    Article  CAS  Google Scholar 

  23. Ohno, S., M. Takanashi, K. Sudo, S. Ueda, A. Ishikawa, N. Matsuyama, K. Fujita, T. Mizutani, T. Ohgi, T. Ochiya, N. Gotoh, and M. Kuroda (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol. Ther. 21: 185–191.

    Article  CAS  Google Scholar 

  24. Lee, H. D., Y. H. Kim, B. H. Koo, and D. S. Kim (2015) The ADAM15 ectodomain is shed from secretory exosomes. BMB Rep. 48: 277–282.

    Article  CAS  Google Scholar 

  25. Sokolova, V., A. K. Ludwig, S. Hornung, O. Rotan, P. A. Horn, M. Epple, and B. Giebel (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces. 87: 146–150.

    Article  CAS  Google Scholar 

  26. Lee, Y., S. El Andaloussi, and M. J. Wood (2012) Exosomes and microvesicles: Extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 21: R125–134.

    Article  CAS  Google Scholar 

  27. Kosaka, N., H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki, and T. Ochiya (2010) Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285: 17442–17452.

    Article  CAS  Google Scholar 

  28. Park, Y. M. (2015) Oxidized LDL induces phosphorylation of non-muscle myosin IIA heavy chain in macrophages. BMB Rep. 48: 48–53.

    Article  CAS  Google Scholar 

  29. Kim, H. S., J. H. Lee, H. D. Han, A. R. Kim, S. T. Nam, H. W. Kim, Y. H. Park, D. Lee, M. B. Lee, Y. M. Park, H. S. Kim, Y. M. Kim, J. C. You, and W. S. Choi (2015) Autocrine stimulation of IL-10 is critical to the enrichment of IL-10-producing CD40(hi)CD5(+) regulatory B cells in vitro and in vivo. BMB Rep. 48: 54–59.

    Article  CAS  Google Scholar 

  30. Bobrie, A., M. Colombo, S. Krumeich, G. Raposo, and C. Thery (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles.1.

    Google Scholar 

  31. Ban, J. J., M. Lee, W. Im, and M. Kim (2015) Low pH increases the yield of exosome isolation. Biochem. Biophys. Res. Commun. 461: 76–79.

    Article  CAS  Google Scholar 

  32. Alexander, M., R. Hu, M. C. Runtsch, D. A. Kagele, T. L. Mosbruger, T. Tolmachova, M. C. Seabra, J. L. Round, D. M. Ward, and R. M. O'Connell (2015) Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun. 6: 7321.

    Article  CAS  Google Scholar 

  33. Povero, D., A. Eguchi, H. Li, C. D. Johnson, B. G. Papouchado, A. Wree, K. Messer, and A. E. Feldstein (2014) Circulating extracellular vesicles with specific proteome and Liver MicroRNAs are potential biomarkers for liver injury in experimental fatty liver disease. PLoS One. 9: e113651.

    Article  Google Scholar 

  34. Taylor, D. D. and C. Gercel-Taylor (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110: 13–21.

    Article  CAS  Google Scholar 

  35. Hornick, N. I., J. Huan, B. Doron, N. A. Goloviznina, J. Lapidus, B. H. Chang, and P. Kurre (2015) Serum exosome microrna as a Minimally-invasive early biomarker of AML. Sci. Rep. 5: 11295.

    Article  CAS  Google Scholar 

  36. Gyorgy, B., T. G. Szabo, M. Pasztoi, Z. Pal, P. Misjak, B. Aradi, V. Laszlo, E. Pallinger, E. Pap, A. Kittel, G. Nagy, A. Falus, and E. I. Buzas (2011) Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell Mol. Life Sci. 68: 2667–2688.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wooseok Im or Manho Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Ban, JJ., Im, W. et al. Influence of storage condition on exosome recovery. Biotechnol Bioproc E 21, 299–304 (2016). https://doi.org/10.1007/s12257-015-0781-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0781-x

Keywords

Navigation