Skip to main content
Log in

Bioanode of polyurethane/graphite/polypyrrole composite in microbial fuel cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Polyurethane (PU) foams were coated with graphite, and pyrrole monomer was subsequently polymerized onto its surface by chemical oxidization to obtain nanostructured polyurethane/graphite/polypyrrole (PU/Graph/PPy) composites, which were used for anaerobic microorganisms grown and tested as anodes in microbial fuel cells (MFC) using municipal wastewater as fuel. The effects of oxidizing agent type (ammonium persulfate and FeCl3) used in pyrrole polymerization on the performance of electrodes in MFC were studied. Composites were characterized by Fourier Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), and by the four-point probes to determine conductivity. It was observed from SEM analysis that globular nanostructures of PPy were formed onto PU surface with average diameters between 120 and 450 nm, which are typical of aqueous polymerization of pyrrole monomer. The highest output power density observed in MFCs was 305.5 mW/m3 for the composite synthesized using FeCl3 as the oxidant, and 128.6 mW/m3 using the composite obtained with ammonium persulfate as oxidizing; the corresponding chemical oxygen demand (COD) removal were 48.2 and 45.5%, respectively. The calculated coulombic efficiency for PU/Graph/PPy composite obtained with FeCl3 as oxidant was of 9.4%. Internal resistance of MFC using the composite obtained with FeCl3 as oxidant was determined by linear sweep voltammetry (LSV) and the variable resistance (VR) methods, giving 4.8 and 2.9 kO, respectively, with average maximum power density of 237.5 mW/m3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Logan, B. E. and J. M. Regan (2006) Microbial fuel cells-challenges and applications. Environ. Sci. Technol. 40: 5172–5180.

    Article  CAS  Google Scholar 

  2. Liu, X., X. Du, X. Wang, N. Li, P. Xu, and Y. Ding (2013) Improved microbial fuel cell performance by encapsulating microbial cells with a nickel-coated sponge. Biosens. Bioelectron. 41: 848–851.

    Article  Google Scholar 

  3. Kiely, P. D., R. Cusick, D. F. Call, P. A. Selembo, J. M. Regan, and B. E. Logan (2011) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour. Technol. 102: 388–394.

    Article  CAS  Google Scholar 

  4. Premier, G. C., J. R. Kim, I. Michie, R. M. Dinsdale, and A. J. Guwy (2011) Automatic control of load increases power and efficiency in a microbial fuel cell. J. Power Sour. 196: 2013–2019.

    Article  CAS  Google Scholar 

  5. Xie, X., G. Yu, N. Liu, Z. Bao, C. S. Criddle, and Y. Cui (2012) Graphene–sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 5: 6862–6866.

    Article  CAS  Google Scholar 

  6. Fan, Y., E. Sharbrough, and H. Liu (2008) Quantification of the internal resistance distribution of microbial fuel cells. Environ. Sci. Technol. 42: 8101–8107.

    Article  CAS  Google Scholar 

  7. Yuan, Y., S. Zhou, Y. Liu, and J. Tang (2013) Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environ. Sci. Technol. 47: 14525–14532.

    Article  CAS  Google Scholar 

  8. Park, H. O., S. Oh, R. Bade, and W. S. Shin (2011) Application of Fungal Moving-Bed Biofilm Reactors (MBBRs) and chemical coagulation for dyeing wastewater treatment. KSCE J. Civ. Eng. 15: 453–461.

    Article  Google Scholar 

  9. Deng, Q., X. Li, J. E. Zuo, B. E. Logan, and A. Ling (2009) Power generation using an activated carbon fiber felt (ACFF) cathode in an upflow microbial fuel cell. J. Power Sour. 195: 1130–1135.

    Article  Google Scholar 

  10. Yuan, Y. and S. Kim (2008) Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes. Bull. Kor. Chem. Soc. 29: 1344–1348.

    Article  CAS  Google Scholar 

  11. Patil, V. D., D. B. Patil, M. B. Deshmukh, and S. H. Pawar (2013) Role of modified electrode on the performance of microbial fuel cell. Int. J. Adv. Sci. Eng. Technol. 2: 138–143.

    Google Scholar 

  12. Choi, H. J., Y. M. Song, I. Chung, K. S. Ryu, and N. J. Jo (2009) Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air. Smart Mater. Struct. 18: 024006.

    Article  Google Scholar 

  13. Broda, C. R., J. Y. Lee, S. Sirivisoot, C. E. Schmidt, and B. S. Harrison (2011) A chemically polymerized electrically conducting composite of polypyrrole nanoparticles and polyurethane for tissue engineering. J. Biomed. Mater. Res. A 98: 509–516.

    Article  Google Scholar 

  14. Chiu, H. T., J. S. Lin, and C. M. Huang (1992) The morphology and conductivity of polypyrrole/polyurethane alloy films. J. Appl. Electrochem. 22: 358–363.

    Article  CAS  Google Scholar 

  15. Bouanga, C. V., K. Fatyeyeva, P. Y. Baillif, C. Khaokong, J. F. Pilard, and M. Tabellout (2010) Dielectric relaxation phenomena and electric properties of conductive composite polyurethane/polyaniline films. Macromol. Symp. 290:175–184.

    Article  CAS  Google Scholar 

  16. Rangel-Vázquez, N. A., R. Salgado-Delgado, E. García-Hernández, and A. M. Mendoza-Martínez (2009) Characterization of copolymer based in polyurethane and polyaniline (PU/PANI). J. Mex. Chem. Soc. 53: 248–252.

    Google Scholar 

  17. Xie, X., M. Ye, L. Hu, N. Liu, J. R. McDonough, W. Chen, H. N. Alshareef, C. S. Criddle, and Y. Cui (2012) Carbon nanotubecoated macroporous sponge for microbial fuel cell electrodes. Energy Environ. Sci. 5: 5265–5270.

    Article  CAS  Google Scholar 

  18. Antonio-Carmona, I. D., S. Y. Martínez-Amador, H. Martínez-Gutiérrez, V. M. Ovando-Medina, and O. González-Ortega (2015) Semiconducting polyurethane/polypyrrole/polyaniline for microorganism immobilization and wastewater treatment in anaerobic/aerobic sequential packed bed reactors. J. App. Polym. Sci. 132: 42242–42252.

    Article  Google Scholar 

  19. Eaton, A. D., L. S. Clesceri, A. E. Greenberg, and M. A. H. Franson (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, USA.

    Google Scholar 

  20. NMX-AA-030-SCFI-2001 (2001) Análisis de Agua–Determinación de la Demanda Química de Oxígeno en Aguas Naturales, Residuales y Residuales Tratadas–Método de Prueba (Cancela a la NMN-AA-030-1981). Secretaría de Economía, México.

  21. Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder U, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey (2006) Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 40: 5181–5192.

    Article  CAS  Google Scholar 

  22. Sathish-Kumar, K., O. Solorza-Feria, R. Hernández-Vera, G. Vazquez-Huerta, and H. M. Poggi-Varaldo (2012) Comparison of various techniques to characterize a single chamber microbial fuel cell loaded with sulfate reducing biocatalysts. J. New Mat. Electrochem. Syst. 15: 195–201.

    CAS  Google Scholar 

  23. Borole, A. P., D. Aaron, C. Y. Hamilton, and C. Tsouris (2010) Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Environ. Sci. Technol. 44: 2740–2745.

    Article  CAS  Google Scholar 

  24. Kim, S. I. and S. H. Roh (2010) Multiwalled carbon nanotube/polyacrylonitrile composite as anode material for microbial fuel cells application. J. Nanosci. Nanotechno. 10: 3271–3274.

    Article  CAS  Google Scholar 

  25. Zou, Y., C. Xiang, L. Yang, L. X. Sun, F. Xu, and Z. Cao (2008) A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material. Int. J. Hydrogen Energ. 33: 4856–4862.

    Article  CAS  Google Scholar 

  26. Cheng, S. and B. E. Logan (2007) Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 9: 492–496.

    Article  Google Scholar 

  27. Yuan, Y. and S. Kim (2008) Improved performance of a microbial fuel cell with polypyrrole/carbon black composite coated carbon paper anodes. Bull. Kor. Chem. Soc. 29: 1344–1348.

    Article  CAS  Google Scholar 

  28. Pérez-Martínez, C. J., T. del Castillo-Castro, M. M. Castillo-Ortega, D. E. Rodríguez-Félix, P. J. Herrera-Franco, and V. M. Ovando-Medina (2013) Preparation of polyaniline submicro/nanostructures using L-glutamic acid: Loading and releasing studies of amoxicillin. Synth. Met. 184: 41–47.

    Article  Google Scholar 

  29. Gregorí, B. S., M. Guerra, G. Mieres, L. Alba, A. Brown, N. A. Rangel-Vázquez, M. Sosa, and Y. de la Hoz (2008) Caracterización estructural de poliuretanos mediante espectroscopia FTIR y RMN (1H y C13). Rev. Iberoam. Polim. 9: 377–388.

    Google Scholar 

  30. Choi, J., H. Kim, S. Haam, and S. Y. Lee (2010) Effects of reaction sequence on the colloidal polypyrrole nanostructures and conductivity. J. Disper. Sci. Technol. 31: 743–749.

    Article  CAS  Google Scholar 

  31. Buitron, G. and C. Cervantes-Astorga (2013) Performance evaluation of a low-cost microbial fuel cell using municipal wastewater. Water Air Soil Poll. 224: 2–8.

    Article  Google Scholar 

  32. Guo, Q., S. Zhao, X. Wang, X. Yue, and L. Hou (2010) Electricity generation characteristics of an anaerobic fluidized bed microbial fuel cell. The 13th International Conference on Fluidization-New Paradigm in Fluidization Engineering, Art. 43: 1–8.

    Google Scholar 

  33. Fornero, J. J., M. Rosenbaum, and L. T. Angenent (2010) Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanal. 22: 832–843.

    Article  CAS  Google Scholar 

  34. Menicucci, J., H. Beyenal, E. Marsili, R. Angathevar, G. Demir, and Z. Lewandowski (2006) Procedure for determining maximum sustainable power generated by microbial fuel cells. Environ. Sci. Technol. 40: 1062–1068.

    Article  CAS  Google Scholar 

  35. Schröder, U. (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 9: 2619–2629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Ovando-Medina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Rodríguez, P., Ovando-Medina, V.M., Martínez-Amador, S.Y. et al. Bioanode of polyurethane/graphite/polypyrrole composite in microbial fuel cells. Biotechnol Bioproc E 21, 305–313 (2016). https://doi.org/10.1007/s12257-015-0628-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0628-5

Keywords

Navigation