Skip to main content
Log in

Enhanced sulfate reduction by Citrobacter sp. coated with Fe3O4/SiO2 magnetic nanoparticles

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A sulfate-reducing Citrobacter strain was isolated and coated with Fe3O4/SiO2 magnetic nanoparticles (MNPs) to enhance sulfate reduction. Biolog analysis showed that it utilizes a broad range of electron donors. The findings also showed that this bacteria strain is a facultative anaerobe and can completely reduce 12 mM of sulfate to sulfide in 7 days under anaerobic conditions. Moreover, sulfate reduction was enhanced by 79% under optimized conditions. Different SiO2 wrap-ratios of the MNPs attached to the cell surface were studied to optimize the sulfate reduction: the surface of cells coated with 300% silica wrap-ratio MNPs showed the highest stability and increased desulfurization batch time, with a 450% increase in sulfate reduction in comparison with uncoated cells cultivated in anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muyzer, G. and A. M. Stams (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6: 441–454.

    CAS  Google Scholar 

  2. Silva, A. J., M. B. Varesche, E. Foresti, and M. Zaiat (2002) Sulphate removal from industrial wastewater using a packed-bed anaerobic reactor. Proc. Biochem. 37: 927–935.

    Article  CAS  Google Scholar 

  3. Kaster, K. M., A. Grigoriyan, G. Jenneman, and G. Voordouw (2007) Effect of nitrate and nitrite on sulphide production by two thermophilic, sulphate-reducing enrichments from an oil field in the North Sea. Appl. Microbiol. Biotechnol. 75: 195–203.

    Article  CAS  Google Scholar 

  4. Hubert, C. and G. Voordouw (2007) Oil field souring control by nitrate-reducing Sulphurospirillum spp. That out compete sulfate-reducing bacteria for organic electron donors. Appl. Environ. Microbiol. 73: 2644–2652.

    Article  CAS  Google Scholar 

  5. Wilms, R., H. Sass, B. Kopke, H. Cypionka, and B. Engelen (2007) Methane and sulphate profiles within the subsurface of a tidal flat are reflected by the distribution of sulphate-reducing bacteria and methanogenic archaea. FEMS. Microbiol. Ecol. 59: 611–621.

    Article  CAS  Google Scholar 

  6. Stams, A. J., S. J. W. H. Elferink, and P. Westerman (2003) Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. Adv. Biochem. Eng. Biotechnol. 81: 31–56.

    CAS  Google Scholar 

  7. Luo, Y. D., C. A. Dai, and W. Y. Chiu (2008) Polystyrene/Fe3O4 composite latex via miniemulsion polymerization-nucleation mechanism and morphology. Polym. Chem. 46: 1014–1024.

    Article  CAS  Google Scholar 

  8. Mangeney, C., M. Fertani, and S. Bousalem (2009) Magnetic Fe2O3-polystyrene/PPy core/shell particles: bio-reactivity and self-assemble. Langmuir. 23: 10940–10949.

    Article  Google Scholar 

  9. Lellouche, J. P., G. Senthil, and A. Joseph (2005) Magnetically responsive carboxylated magnetite polydipyrrole/ polydicarbazole nanocomposites of core-shell morphology. Preparation, characterization, and use in DNA hybridization. J. Am. Chem. Soc. 127: 11998–12006.

    Article  CAS  Google Scholar 

  10. Ashtari, P., X. X. He, K. Wang, and P. Gong (2005) An efficient method for recovery of target ssDNA based on amino-modified silica-coated magnetic nanoparticles. Talanta. 67: 548–554.

    Article  CAS  Google Scholar 

  11. Rao, A. G., P. Ravichandra, J. Joseph, A. Jetty, and P. N. Sarma (2007) Microbial conversion of sulphur dioxide in flue gas to sulphide using bulk drug industry wastewater as an organic source by mixed cultures of sulphate reducing bacteria. J. Hazard. Mater. 147: 718–725.

    Article  CAS  Google Scholar 

  12. Qiu, R. L., B. L. Zhao, J. L. Liu, and X. F. Huang (2009) Sulfate reduction and copper precipitation by a Citrobacter sp. isolated from a mining area. J. Hazard. Mater. 164: 1310–1315.

    Article  CAS  Google Scholar 

  13. Roest, K., H. G. Heilig, H. Smidt, W. M. Vos, A. J. Stams, and A. D. Akkermans (2005) Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst. Appl. Microbiol. 28: 175–185.

    Article  CAS  Google Scholar 

  14. Mogensen, G. L., K. U. Kjeldsen, and K. Ingvorsen (2005) Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulphate reducing bacterium isolated fromactivated sludge. Anaerobe. 11: 339–349.

    Article  CAS  Google Scholar 

  15. Rees, G. N. and B. K. Patel (2001) Desulforegula conservatrix gen. nov., sp. nov., a long-chain fatty acid-oxidizing, sulfate-reducing bacterium isolated from sediments of a freshwater lake. Int. J. Syst. Bacteriol. 51: 1911–1916.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Yang, M., Song, Z. et al. Enhanced sulfate reduction by Citrobacter sp. coated with Fe3O4/SiO2 magnetic nanoparticles. Biotechnol Bioproc E 20, 117–123 (2015). https://doi.org/10.1007/s12257-014-0504-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0504-8

Keywords

Navigation