Skip to main content
Log in

Bioethanol production from the waste product of salted Undaria pinnatifida using laboratory and pilot development unit (PDU) scale fermenters

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The waste product from salted Undaria pinnatifida (sea mustard) processing was fermented to produce bioethanol by Saccharomyces cerevisiae KCCM 1129 at laboratory and pilot development unit (PDU) scales. Thermal acidic hydrolysis of salted U. pinnatifida was conducted with 75 mM H2SO4 at 121℃ for 60 min and the addition of 1.4 KNU/mL Termamyl 120L. A total monosaccharide concentration of 19.3 g/L and 32.2% conversion from 59.9 g/L total carbohydrate using 130 g dw/L salted U. pinnatifida were achieved. Ethanol fermentations in 5 and 500 L fermenters were carried out to produce 8.5 g/L of ethanol with an ethanol yield (YEtOH) of 0.44 at 24 h and 7.9 g/L with YEtOH of 0.41 at 18 h, respectively. The fermentation time of the PDU-scale reaction was reduced due to differences in the impeller type and geometry of the fermenters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh, A., P. S. Nigam, and J. D. Murphy (2011) Renewable fuels from algae: An answer to debatable land based fuels. Bioresour. Technol. 102: 10–16.

    Article  CAS  Google Scholar 

  2. Jang, J. S., Y. K. Cho, G. T. Jeong, and S. K. Kim (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioproc. Biosyst. Eng. 35: 11–18.

    Article  CAS  Google Scholar 

  3. Usov, A., G. Smirnova, and N. Klochkova (2001) Polysaccharides of algae: 55. Polysaccharide composition of several brown algae from Kamchatka. Russ. J. Bioorg. Chem. 27: 395–399.

    Article  CAS  Google Scholar 

  4. Wargacki, A. J., E. Leonard, M. N. Win, D. D. Regitsky, C. N. S. Santos, P. B. Kim, S. R. Cooper, R. M. Raisner, A. Herman, and A. B. Sivitz (2012) An engineered microbial platform for direct biofuel production form brown marcoalgae. Sci. 335: 308–313.

    Article  CAS  Google Scholar 

  5. Bilan, M. I., A. A. Grachev, N. E. Ustuzhanina, A. S. Shashkov, N. E. Nifantiev, and A. I. Usov (2002) Structure of a fucoidan from the brown seaweed Fucus evanescens C. Ag. Carbohydr. Res. 337: 719–730.

    Article  CAS  Google Scholar 

  6. Chizhov, A. O., A. Dell, H. R. Morris, S. M. Haslam, R. A. McDowell, and A. S. Shashkov (1991) A study of fucoidan from the brown seaweed Chorda filum. Carbohydr. Res. 320: 108–119.

    Article  Google Scholar 

  7. Bilan, M. I., M. I. Kusaykin, A. A. Grachev, E. A. Tsvetkova, T. N. Zvyagintseva, N. E. Nifantiev, and A. I. Usov (2005) Effect of enzyme prepraration from the marine mollusk Littorina kurila on fucoidan from the brown alga Fucus distichus. Biochem. 70: 1321–1326.

    CAS  Google Scholar 

  8. Agbor, V. B., N. Cicek, R. Sparling, A. Berlin, and D. B. Levin (2011) Biomass pretreatment: Fundamentals toward application. Biotechnol. Advan. 29: 675–685.

    Article  CAS  Google Scholar 

  9. Choi, D. B., H. S. Sim, Y. L. Piao, W. Ying, and H. Cho (2009) Sugar production from raw seaweed using the enzyme method. J. Ind. Eng. Chem. 15: 12–15.

    Article  CAS  Google Scholar 

  10. Kim, H. J., C. H. Ra, and S. K. Kim (2013) Ethanol production from seaweed (Undaria pinnatifida) using yeast acclimated to specific sugars. Biotechnol. Bioproc. Eng. 18: 533–537.

    Article  CAS  Google Scholar 

  11. Cho, Y. K., H. J. Kim, and S. K. Kim (2013) Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast. Bioproc. Biosyst. Eng. 36: 713–719.

    Article  CAS  Google Scholar 

  12. Cho, H. Y., C. H. Ra, and S. K. Kim (2013) Ethanol production from the seaweed, Gelidium amansii using specific sugar acclimated yeasts. J. Microbiol. Biotechnol. 24: 264–269.

    Article  Google Scholar 

  13. Sanchez-Machado, D. I., J. Lopez-Cervantes, P. Paseiro-Losada, and J. Lopez-Hernandez (2004) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 85: 439–444.

    Article  CAS  Google Scholar 

  14. Rocha, G. J. M., C. Martin, V. F. N. da Silva, E. O. Gomez, and A. R. Goncalves (2012) Mass balance of pilot-scale pretreatment of sugarcane bagasse by steam explosion followed by alkaline delignification. Bioresour. Technol. 111: 447–452.

    Article  CAS  Google Scholar 

  15. Horn, S. J., I. M. Aasen, and K. Østgaard (2000) Production of ethanol from mannitol by Zymobacter palmae. J. Ind. Microbiol. Biotechnol. 24: 51–57.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Koo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ra, C.H., Kang, CH., Jeong, GT. et al. Bioethanol production from the waste product of salted Undaria pinnatifida using laboratory and pilot development unit (PDU) scale fermenters. Biotechnol Bioproc E 19, 984–988 (2014). https://doi.org/10.1007/s12257-014-0179-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0179-1

Keywords

Navigation