Skip to main content
Log in

A modified piggybac transposon system mediated by exogenous mRNA to perform gene delivery in bovine mammary epithelial cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Transposons are widely used for genetic engineering in various model organisms. Recently, piggyBac (PB) has been developed as a transposable and efficient gene transfer tool in mammalian cells. In the present study, we developed three types of PB transposon systems containing a dual plasmid system (DPS), a single plasmid system (SPS), and a DNA-mRNA combined system (DRPS) and characterized their basic properties in HEK293 cells. The basic elements of the donor plasmid included a selectable-reporter gene expression cassette, two loxP sites in the same orientation, a multiple cloning site, and two chicken β-globin insulator core elements. We further identified the function of the selectable-reporter and examined PB integration sites in the human genome. Moreover, we compared the transposition efficacy and found that SPS transposed more efficiently, as compared to DPS; integration into the host genome was determined by measuring PBase activity. Results discovered the loss of PBase activity in the DRPS, indicating that this system is much more biologically safe, as compared to DPS and SPS. Finally, we employed the DRPS to successfully perform a gene delivery into bovine mammary epithelial cells (BMECs). Taken together, the information from this study will improve the flexibility of PB transposon systems and reduce the genotoxicity of PBase in genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lacoste, A., F. Berenshteyn, and A. H. Brivanlou (2009) An efficient and reversible transposable system for gene delivery and lineage-specific differentiation in human embryonic stem cells. Cell Stem Cell 5: 332–342.

    Article  CAS  Google Scholar 

  2. Cary, L. C., M. Goebel, B. G. Corsaro, H. G. Wang, E. Rosen, and M. J. Fraser (1989) Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virol. 172: 156–169.

    Article  CAS  Google Scholar 

  3. Fraser, M. J., L. Cary, K. Boonvisudhi, and H. G. H. Wang (1995) Assay for Movement of lepidopteran transposon Ifp2 in insect cells using a baculovirus genome as a target DNA. Virol. 211: 397–407.

    Article  CAS  Google Scholar 

  4. Fraser, M. J., T. Coszczon, T. Elick, and C. Bauser (1996) Precise excision of TTAA-specific lepidopteran transposons piggy-Bac(IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 5: 141–151.

    Article  CAS  Google Scholar 

  5. Handler, A. M., S. D. McCombs, M. J. Fraser, and S. H. Saul (1998) The lepidopteran transposon vector, piggyBac, mediates germ-line transformation in the Mediterranean fruit fly. Proc. Nat. Acad. Sci. U. S. A. 95: 7520–7525.

    Article  CAS  Google Scholar 

  6. Lynch, A. G., F. Tanzer, M. J. Fraser, E. G. Shephard, A. -L. Williamson, and E. P. Rybicki (2010) Use of the piggyBac transposon to create HIV-1 gag transgenic insect cell lines for continuous VLP production. BMC Biotechnol. 10: 30.

    Article  Google Scholar 

  7. Wilson, M. H., C. J. Coates, and A. L. George (2007) piggyBac transposon-mediated gene transfer in human cells. Mol. Therapy: The J. American Soc. Gene Therapy 15: 139–145.

    Article  CAS  Google Scholar 

  8. Ding, S., X. Wu, G. Li, M. Han, Y. Zhuang, and T. Xu (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 122: 473–483.

    Article  CAS  Google Scholar 

  9. Rad, R., L. Rad, W. Wang, J. Cadinanos, G. Vassiliou, S. Rice, L. S. Campos, K. Yusa, R. Banerjee, M. A. Li, J. de la Rosa, A. Strong, D. Lu, P. Ellis, N. Conte, F. T. Yang, P. Liu, and A. Bradley (2010) piggyBac transposon mutagenesis: A tool for cancer gene discovery in mice. Sci. 330: 1104–1107.

    Article  CAS  Google Scholar 

  10. Chew, S. K., R. Rad, P. A. Futreal, A. Bradley, and P. T. Liu (2011) Genetic screens using the piggyBac transposon. Methods 53: 366–371.

    Article  CAS  Google Scholar 

  11. Jang, G., S. Kim, S. Islam, W. Choi, S. Lee, W. Lee, B. Lee, J. Cho, and J. Moon (2011) Production of transgenic bovine cloned embryos using piggyBac transposition. Transg. Res. 20: 1176–1177.

    Google Scholar 

  12. Bai, D. P., M. M. Yang, and Y. L. Chen (2012) piggyBac transposon-mediated gene transfer in Cashmere goat fetal fibroblast cells. Biosci. Biotechnol. Biochem. 76: 933–937.

    Article  CAS  Google Scholar 

  13. Park, T. S. and J. Y. Han (2012) piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc. Nat. Acad. Sci. U. S. A. 109: 9337–9341.

    Article  CAS  Google Scholar 

  14. Choi, W. J., S. J. Lee, W. W. Lee, S. J. Kim, I. M. Saadeldin, J. K. Cho, B. C. Lee, and G. Jang (2013) Implantation of transgenic bovine cloned embryos derived from transfected cells by piggybac transposition. Reprod. Fert. Develop. 25: 173–174.

    Article  Google Scholar 

  15. Kim, S. J., I. M. Saadeldin, W. J. Choi, S. J. Lee, W. W. Lee, B. H. Kim, H. J. Han, D. H. Bang, B. C. Lee, and G. Jang (2011) Production of transgenic bovine cloned embryos using piggybac transposition. J. Veterinary Med. Sci. 73: 1453–1457.

    Article  CAS  Google Scholar 

  16. Woltjen, K., I. P. Michael, P. Mohseni, Desai R, M. Mileikovsky, R. Hamalainen, R. Cowling, W. Wang, P. Liu, M. Gertsenstein, K. Kaji, H. K. Sung, and A. Nagy (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458: 766–770.

    Article  CAS  Google Scholar 

  17. Yusa, K., R. Rad, J. Takeda, and A. Bradley (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat. Methods 6: 363–369.

    Article  CAS  Google Scholar 

  18. Tsukiyama, T. (2011) Development of a simple and efficient method for generation of iPS cells by using piggybac system to screen novel culture conditions. Seikagaku The J. Japan. Biochem. Soc. 83: 855–858.

    CAS  Google Scholar 

  19. Tsukiyama, T., R. Asano, T. Kawaguchi, N. Kim, M. Yamada, N. Minami, Y. Ohinata, and H. Imai (2011) Simple and efficient method for generation of induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible factors and an EOS reporter system. Genes to Cells: Devot. Mol. Cell. Mech. 16: 815–825.

    Article  CAS  Google Scholar 

  20. Zhou, F., S. Liang, A. H. Chen, C. O. Singh, R. Bhaskar, Y. S. Niu, and Y. G. Miao (2012) A transgenic Marc-145 cell line of piggyBac transposon-derived targeting shRNA interference against porcine reproductive and respiratory syndrome virus. Vet. Res. Commun. 36: 99–105.

    Article  CAS  Google Scholar 

  21. Uetake, H., K. Oka, and Y. Niki (2011) Stable transformation and cloning mediated by piggyBac vector and RNA interference knockdown of Drosophila ovarian cell line. In vitro Cell. Develop. Biol. Animal. 47: 689–694.

    Article  CAS  Google Scholar 

  22. Yusa, K., L. Zhou, M. A. Li, A. Bradley, and N. L. Craig (2011) A hyperactive piggyBac transposase for mammalian applications. Proc. Nat. Acad. Sci. U. S. A. 108: 1531–1536.

    Article  CAS  Google Scholar 

  23. Chen, Y. T., K. Furushima, P. S. Hou, A. T. Ku, J. M. Deng, C. W. Jang, H. Fang, H. P. Adams, M. L. Kuo, H. N. Ho, C. L. Chien, and R. R. Behringer (2010) piggyBac transposon-mediated, reversible gene transfer in human embryonic stem cells. Stem Cells and Develop. 19: 763–771.

    Article  CAS  Google Scholar 

  24. Urschitz, J., M. Kawasumi, J. Owens, K. Morozumi, H. Yamashiro, I. Stoytchev, J. Marh, J. A. Dee, K. Kawamoto, C. J. Coates, J. M. Kaminski, P. Pelczar, R. Yanagimachi, and S. Moisyadi (2010) Helper-independent piggyBac plasmids for gene delivery approaches: strategies for avoiding potential genotoxic effects. Proc. Nat. Acad. Sci. U. S. A. 107: 8117–8122.

    Article  CAS  Google Scholar 

  25. Li, X., R. A. Harrell, A. M. Handler, T. Beam, K. Hennessy, and M. J. Fraser (2005) piggyBac internal sequences are necessary for efficient transformation of target genomes. Insect Mol. Biol. 14: 17–30.

    Article  Google Scholar 

  26. Krieg, P. and D. Melton (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12: 7057–7070.

    Article  CAS  Google Scholar 

  27. Warren, L., P. D. Manos, T. Ahfeldt, Y. H. Loh, H. Li, F. Lau, W. Ebina, P. K. Mandal, Z. D. Smith, A. Meissner, G. Q. Daley, A. S. Brack, J. J. Collins, C. Cowan, T. M. Schlaeger, and D. J. Rossi (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 7: 618–630.

    Article  CAS  Google Scholar 

  28. Liu, Y. G. and R. F. Whittier (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genom. 25: 674–681.

    Article  CAS  Google Scholar 

  29. Liu, Y. G. and Y. Chen (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. BioTechniques. 43: 649–650.

    Article  CAS  Google Scholar 

  30. Su, H., X. Liu, W. Yan, T. Shi, X. Zhao, D. P. Blake, F. M. Tomley, and X. Suo (2012) piggyBac transposon-mediated transgenesis in the apicomplexan parasite Eimeria tenella. PloS one. 7: e40075.

    Article  CAS  Google Scholar 

  31. Nakanishi, H., Y. Higuchi, S. Kawakami, F. Yamashita, and M. Hashida (2011) Comparison of piggyBac transposition efficiency between linear and circular donor vectors in mammalian cells. J. Biotechnol. 154: 205–208.

    Article  CAS  Google Scholar 

  32. Zhao, M. T., H. Lin, F. J. Liu, F. S. Quan, G. H. Wang, J. Liu, S. Hua, and Y. Zhang (2009) Efficiency of human lactoferrin transgenic donor cell preparation for SCNT. Theriogenol. 71: 376–384.

    Article  CAS  Google Scholar 

  33. Wu, S. C., Y. J. Meir, C. J. Coates, A. M. Handler, P. Pelczar, S. Moisyadi, and J. M. Kaminski (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc. Nat. Acad. Sci. U. S. A. 103: 15008–15013.

    Article  CAS  Google Scholar 

  34. Meir, Y. J., M. T. Weirauch, H. S. Yang, P. C. Chung, R. K. Yu, and S. C. Wu (2011) Genome-wide target profiling of piggyBac and Tol2 in HEK 293: Pros and cons for gene discovery and gene therapy. BMC Biotechnol. 11: 28.

    Article  CAS  Google Scholar 

  35. Li, M. A., D. J. Turner, Z. Ning, K. Yusa, Q. Liang, S. Eckert, L. Rad, T. W. Fitzgerald, N. L. Craig, and A. Bradley (2011) Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res. 39: e148.

    Article  CAS  Google Scholar 

  36. Rostovskaya, M., J. Fu, M. Obst, I. Baer, S. Weidlich, H. Wang, A. J. Smith, K. Anastassiadis, and A. F. Stewart (2012) Transposon-mediated BAC transgenesis in human ES cells. Nucleic Acids Res. 40: e150.

    Article  CAS  Google Scholar 

  37. Bire, S., D. Gosset, G. Jégot, P. Midoux, C. Pichon, and F. Rouleux-Bonnin (2013) Exogenous mRNA delivery and bioavailability in gene transfer mediated by piggyBac transposition. BMC Biotechnol. 13: 75.

    Article  CAS  Google Scholar 

  38. Morales, M. E., V. H. Mann, K. J. Kines, G. N. Gobert, M. J. Fraser, B. H. Kalinna, J. M. Correnti, E. J. Pearce, and P. J. Brindley (2007) piggyBac transposon mediated transgenesis of the human blood fluke, Schistosoma mansoni. The FASEB J. 21: 3479–3489.

    Article  CAS  Google Scholar 

  39. Shinmyo, Y., T. Mito, T. Matsushita, I. Sarashina, K. Miyawaki, H. Ohuchi, and S. Noji (2004) piggyBac-mediated somatic transformation of the two-spotted cricket, Gryllus bimaculatus. Develop. Growth & Diff. 46: 343–349.

    Article  CAS  Google Scholar 

  40. Bire, S., D. Ley, S. Casteret, N. Mermod, Y. Bigot, and F. Rouleux-Bonnin (2013) Optimization of the piggyBac transposon using mRNA and Insulators: Toward a more reliable gene delivery system. PloS one. 8: e82559.

    Article  Google Scholar 

  41. Maury, J. J., A. B. Choo, and K. K. Chan (2011) Technical advances to genetically engineering human embryonic stem cells. Integ. Biol: Quantitative Biosci. Nano to Macro. 3: 717–723.

    Article  CAS  Google Scholar 

  42. Sarkar, A., C. Sim, Y. S. Hong, J. R. Hogan, M. J. Fraser, H. M. Robertson, and F. H. Collins (2003) Molecular evolutionary analysis of the widespread piggyBac transposon family and related “domesticated” sequences. Mol. Gen. Genom.: MGG. 270: 173–180.

    Article  CAS  Google Scholar 

  43. Rivella, S., J. A. Callegari, C. May, C. W. Tan, and M. Sadelain (2000) The cHS4 insulator increases the probability of retroviral expression at random chromosomal integration sites. J. Virol. 74: 4679–4687.

    Article  CAS  Google Scholar 

  44. Arumugam, P. I., J. Scholes, N. Perelman, P. Xia, J. K. Yee, and P. Malik (2007) Improved human beta-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (cHS4) insulator element. Mol. Therapy 15: 1863–1871.

    Article  CAS  Google Scholar 

  45. Li, C. L. and D. W. Emery (2008) The cHS4 chromatin insulator reduces gammaretroviral vector silencing by epigenetic modifications of integrated provirus. Gene Therapy 15: 49–53.

    Article  Google Scholar 

  46. Sharma, N., A. K. Hollensen, R. O. Bak, N. H. Staunstrup, L. D. Schroder, and J. G. Mikkelsen (2012) The impact of cHS4 insulators on DNA transposon vector mobilization and silencing in retinal pigment epithelium cells. PloS one. 7: e48421.

    Article  CAS  Google Scholar 

  47. Palmenberg, A. C., G. D. Parks, D. J. Hall, R. H. Ingraham, T. W. Seng, and P. V. Pallai (1992) Proteolytic processing of the cardioviral P2 region: Primary 2A/2B cleavage in clone-derived precursors. Virol. 190: 754–762.

    Article  CAS  Google Scholar 

  48. Ryan, M. D., A. King, and G. P. Thomas (1991) Cleavage of footand-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. The J. Gen. Virol. 72: 2727–2732.

    Article  CAS  Google Scholar 

  49. Chinnasamy, D., M. D. Milsom, J. Shaffer, J. Neuenfeldt, A. F. Shaaban, G. P. Margison, L. J. Fairbairn, and N. Chinnasamy (2006) Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virol J. 3: 14.

    Article  Google Scholar 

  50. Schwenk, F., U. Baron, and K. Rajewsky (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23: 5080–5081.

    Article  CAS  Google Scholar 

  51. Betz, U. A., C. A. Vosshenrich, K. Rajewsky, and W. Muller (1996) Bypass of lethality with mosaic mice generated by CreloxP-mediated recombination. Curr. Biol.: CB. 6: 1307–1316.

    Article  CAS  Google Scholar 

  52. Ruby, K. M. and B. Zheng (2009) Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells. 27: 1496–1506.

    Article  CAS  Google Scholar 

  53. Yu, Y., Y. Wang, Q. Tong, X. Liu, F. Su, F. Quan, Z. Guo, and Y. Zhang (2013) A site-specific recombinase-based method to produce antibiotic selectable marker free transgenic cattle. PloS one. 8: e62457.

    Article  CAS  Google Scholar 

  54. Clark, A. J. (1998) The mammary gland as a bioreactor: Expression, processing, and production of recombinant proteins. J. Mammary Gland Biol. 3: 337–350.

    Article  CAS  Google Scholar 

  55. Yang, P. H., J. W. Wang, G. C. Gong, X. Z. Sun, R. Zhang, Z. Du, Y. Liu, R. Li, F. R. Ding, B. Tang, Y. P. Dai, and N. Li (2008) Cattle mammary bioreactor generated by a novel procedure of transgenic cloning for large-scale production of functional human lactoferrin. PloS one. 3.

    Google Scholar 

  56. Zakhartchenko, V., R. Alberio, M. Stojkovic, K. Prelle, W. Schernthaner, P. Stojkovic, H. Wenigerkind, R. Wanke, M. Duchler, R. Steinborn, M. Mueller, G. Brem, and E. Wolf (1999) Adult cloning in cattle: Potential of nuclei from a permanent cell line and from primary cultures. Mol. Reproduc. Develop. 54: 264–272.

    Article  CAS  Google Scholar 

  57. Kishi, M, Y. Itagaki, R. Takakura, M. Imamura, T. Sudo, M. Yoshinari, M. Tanimoto, H. Yasue, and N. Kashima (2000) Nuclear transfer in cattle using colostrum-derived mammary gland epithelial cells and ear-derived fibroblast cells. Theriogenol. 54: 675–684.

    Article  CAS  Google Scholar 

  58. Kishi M., Y. Itagaki, T. Sudo, and R. Takakura (2003) In vitro development of bovine nuclear transfer embryos reconstructed with mammary gland epithelial cells at different passages. Animal Sci. J. 74: 363–368.

    Article  Google Scholar 

  59. Akagi, S., S. Takahashi, K. Ohkoshi, T. Takenouchi, M. Shimizu, M. Geshi, N. Adachi, D. Fuchimoto, Y. Izaike, and H. Aso (2002) Nuclear transfer using a bovine mammary epithelial cell line (BMEC). Animal Sci. J. 73: 465–469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Wang, J., Huang, H. et al. A modified piggybac transposon system mediated by exogenous mRNA to perform gene delivery in bovine mammary epithelial cells. Biotechnol Bioproc E 19, 350–362 (2014). https://doi.org/10.1007/s12257-013-0811-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0811-5

Keywords

Navigation