Skip to main content
Log in

Improved β-glucan yield using an Aureobasidium pullulans M-2 mutant strain in a 200-L pilot scale fermentor targeting industrial mass production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

β-(1→3)-D-glucans with β-(1→6)-glycosidic linked branches are known to be immune activation agents and are incorporated in anti-cancer drugs and health-promoting supplements. β-Glucan concentration was 9.2 g/L in a 200-L pilot scale fermentor using mutant strain Aureobasidium pullulans M-2 from an imperfect fungal strain belonging to A. pullulans M-1. The culture broth of A. pullulans M-2 had a faint yellow color, whereas that of the wild-type had an intense dark green color caused by the accumulation of melanin-like pigments. β-Glucan produced by A. pullulans M-2 was identified as a polysaccharide of D-glucose monomers linked by β-(1→3, 1→6)-glycosidic bonds through GC/MS and NMR analysis. When a conventional medium was used in the culture of A. pullulans M-2 in a 3-L jar fermentor, β-glucan concentration was 1.4-fold that produced by the wild-type. However, when a medium optimized by statistical experimental design was used with dissolved oxygen at 10%, the β-glucan concentration was 9.9 g/L with a yield of 0.52 (g β-glucan/g consumed sucrose), 2.9-fold that of the wild-type. This level of productivity was reproduced when the fermentation was scaled up 200-L. The industrial production of high β-glucan without melanin-like pigments is highly expected, as a health-promoting supplement or functional food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takimoto, H., D. Wakita, K. Kawaguchi, and Y. Kumazawa (2004) Potentiation of cytotoxic activity in naïve and tumor-bearing mice by oral administration of hot-water extracts from Agaricus brazei fruiting bodies. Biol. Pharm. Bull. 27: 404–406.

    Article  CAS  Google Scholar 

  2. Zhang, J., G. Wang, H. Li, C. Zhuang, T. Mizuno, H. Ito, C. Suzuki, H. Okamoto, and J. Li (1994) Antitumor polysaccharides from a Chinese mushroom, “Yuhuangmo,” the fruiting body of Pleurotus citrinopileatus. Biosci. Biotechnol. Biochem. 58: 1195–1201.

    Article  CAS  Google Scholar 

  3. Delaney, B., R. J. Nicolosi, T. A. Wilson, T. Carlson, S. Frazer, G. -H. Zheng, R. Hess, K. Ostergren, J. Haworth, and N. Knutson (2003) Beta-glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. J. Nutr. 133: 468–475.

    Google Scholar 

  4. Izydorczyk, M. S. and J. E. Dexter (2008) Barley glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products. Food Res. Int’l. 41: 850–868.

    Article  CAS  Google Scholar 

  5. Salar, R. K., M. Certik, and V. Brezova (2012) Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with Thamnidium elegans CCF 1456. Biotechnol. Bioproc. Eng. 17: 109–116.

    Article  CAS  Google Scholar 

  6. Kwiatkowski, S., U. Thielen, P. Glenney, and C. Moran (2009) A Study of Saccharomyces cerevisiae cell wall glucans. J. Inst. Brew. 115: 151–158.

    Article  CAS  Google Scholar 

  7. Goodrige, H. S., C. N. Reyes, C. A. Becker, T. R. Katsumoto, J. Ma, A. J. Wolf, N. Bose, A. S. H. Chan, A. S. Magee, M. E. Danielson, A. Weiss, J. P. Vasilakos, and D. M. Underhill (2011) Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472: 471–475.

    Article  Google Scholar 

  8. Brown, G. D. and S. Gordon (2003) Fungal β-glucans and mammalian immunity. Immunity 19: 311–315.

    Article  CAS  Google Scholar 

  9. Lull, C., H. J. Wichers, and H. F. J. Savelkoul (2005) Antiinflammatory and immunomodulating properties of fungal metabolites. Mediat. Inflamm. 2: 63–80.

    Article  Google Scholar 

  10. Thompson, I. J., P. C. F. Oyston, and D. E. Williamson (2010) Potential of the β-glucans to enhance innate resistance to biological agents. Expert Rev. Anti. Infect. Ther. 8: 339–352.

    Article  CAS  Google Scholar 

  11. Hong, F., J. Yan, J. T. Baran, D. J. Allendorf, R. D. Hansen, G. R. Ostroff, P. X. Xing, N. -K. V. Cheung, and G. D. Ross (2006) Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 173: 797–806.

    Google Scholar 

  12. Li, B., D. J. Allendorf, R. Hansen, J. Marroquin, D. E. Cramer, C. L. Harris, and J. Yan (2007) Combined yeast β-glucan and antitumor monoclonal antibody therapy requires C5a-mediated neutrophil chemotaxis via regulation of decay-accelerating factor CD55. Cancer Res. 67: 7421–7430.

    Article  CAS  Google Scholar 

  13. Yatawara, L., S. Wickramasinghe, M. Nagataki, M. Takamoto, H. Nomura, Y. Ikeue, Y. Watanabe, and T. Agatsuma (2009) Aureobasidium-derived soluble branched (1,3–1,6) β-glucan (Sophy β-glucan) enhances natural killer activity in Leishmania amazonensis-infected mice. Kor. J. Parasitol. 47: 345–351.

    Article  CAS  Google Scholar 

  14. Muramatsu, D., A. Iwai, S. Aoki, H. Uchiyama, K. Kawata, Y. Nakayama, Y. Nikawa, K. Kusano, M. Okabe, and T. Miyazaki (2012) β-Glucan derived from Aureobasidium pullulans is effective for the prevention of influenza in mice. PLoS ONE 7: e41399.

    Article  CAS  Google Scholar 

  15. Miyawaki, K., K. Terao, S. Yamakita, S. Takahashi, Y. Ikeue, N. Fujii, T. Onaka, H. Muramatsu, and S. Nagata (2010) Relationship between the functional β-glucan polysaccharide-production and the cell morphologies of Aureobasidium pullulans. Seibutsukogaku 88: 634–641.

    CAS  Google Scholar 

  16. Hamada, N., K. Deguchi, T. Ohmoto, K. Sakai, T. Ohe, and H. Yoshizumi (2000) Ascorbic acid stimulation of production of a highly branched β-glucan by Aureobasidium pullulans K-1-oxalic acid, a metabolite of ascorbic acid as the stimulating substance. Biosci. Biotechnol. Biochem. 64: 1801–1806.

    Article  CAS  Google Scholar 

  17. Wei, N. -W. V., C. C. Wallace, C. -F. Dai, K. R. M. Pillay, and C. A. (2006) Chen Analyses of the ribosomal internal transcribed spacers (ITS) and the 5.8S gene indicate that extremely high rDNA heterogeneity is a unique feature in the Scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zool. Stud. 45: 404–418.

    CAS  Google Scholar 

  18. Virtudazo, E. V., H. Nakamura, and M. Kakishima (2001) Phylogenic analysis of sugarcane rusts based on sequence of ITS, 5.8 S rRNA and D1/D2 regions of LSU rRNA. J. Gen. Plant Pathol. 67: 28–36.

    Article  CAS  Google Scholar 

  19. Anumula, K. R. and P. B. Taylor (1992) A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal. Biochem. 203: 101–108.

    Article  CAS  Google Scholar 

  20. Schmid, F., B. A. Stone, B. M. McDougall, A. Bacic, K. L. Martin, R. T. C. Brownlee, E. Chai, and R. J. Seviour (2001) Structure of epiglucan a highly side-chain/branched (1→3;1→6)-β-glucan from the micro fungus Epicoccum nigrum Ehrenb. ex. Schlecht. Carbohydr. Res. 331: 163–171.

    Article  CAS  Google Scholar 

  21. Box, G. E. P. and D. W. Behnken (1960) Some new three level designs for the study of quantitative variables. Technometric 2: 455–475.

    Article  Google Scholar 

  22. Lopez, J. C., J. S. Perez, J. M. F. Sevilla, F. G. A. Fernandez, E. M. Grima, and Y. Chisti (2004) Fermentation optimization for the production of lovastatin by Aspergillus terreus: Use of response surface methodology. J. Chem. Technol. Biotechnol. 79: 1196–1126.

    Google Scholar 

  23. EI-Refai, H. A., E. R. EI-Helow, M. A. Amin, L. A. Sallam, and H. -A. A. Salem (2010) Application of multi-factorial experimental designs for optimization of biotin production by a Rhizopus nigricans strain. J. Am. Sci. 6: 179–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enoch Y. Park or Mitsuyasu Okabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moriya, N., Moriya, Y., Nomura, H. et al. Improved β-glucan yield using an Aureobasidium pullulans M-2 mutant strain in a 200-L pilot scale fermentor targeting industrial mass production. Biotechnol Bioproc E 18, 1083–1089 (2013). https://doi.org/10.1007/s12257-013-0516-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0516-9

Keywords

Navigation