Skip to main content
Log in

454 pyrosequencing analysis on microbial diversity of an expanded granular sludge bed reactor treating high NaCl and nitrate concentration wastewater

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The treatment of high-salinity, high-nitrate wastewater was investigated in a single expanded granular sludge bed reactor. Complete denitrification was achieved when nitrate concentration was as high as 6,000 mg N/L and the salinity of influent reached 11% NaCl at liquid up-flow velocity of 3.0 m/h, hydraulic retention time of, 24 h and the C/N molar ratio of 2.0. Furthermore, 454-pyrosequencing technology was used to analyze archaea bacterial diversity under high salinity and high nitrate conditions. Results showed that the total number of effective sequences was 5749 consisting of 5678 bacterial sequences and 71 archaea sequences after denoising and filtering out chimeras, which could be affiliated to 5 phylogenetic groups, including Proteobacteria, Firmicutes, Euryarchaeota, Crenarchaeota and unclassified phylum. Although Proteobacteria was the dominant microbial population, two archaea phylogenetic groups-Crenarchaeota and Euryarchaeota were observed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carrera, J., J. A. Baeza, T. Vicent, and J. Lafuente (2003) Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Res. 37: 4211–4221.

    Article  CAS  Google Scholar 

  2. Yoshie, S., T. Ogawa, H. Makino, H. Hirosawa, S. Tsuneda, and A. Hirata (2006) Characteristics of bacteria showing high denitrification activity in saline wastewater. Lett. Appl. Microbiol. 42: 277–283.

    Article  CAS  Google Scholar 

  3. Yoshie, S., H. Makino, H. Hirosawa, K. Shirotani, S. Tsuneda, and A. Hirata (2006) Molecular analysis of halophilic bacterial community for high-rate denitrification of saline industrial wastewater. Appl. Microbiol. Biotechnol. 72: 182–189.

    Article  CAS  Google Scholar 

  4. Ucisik, A. S. and M. Henze (2004) Biological denitrification of fertiliser wastewater at high chloride concentration. Water SA 30: 191–195.

    Article  CAS  Google Scholar 

  5. Kapoor, A. and T. Viraraghavan (1997) Nitrate removal from drinking water-review. J. Environ. Eng. 123: 371–380.

    Article  CAS  Google Scholar 

  6. Bassin, J. P., M. Pronk, G. Muyzer, R. Kleerebezem, M. Dezotti, and M. C. M. van Loosdrecht (2011) Effect of elevated salt concentrations on the aerobic granular sludge process: Linking microbial activity with microbial community structure. Appl. Environ. Microbiol. 77: 7942–7953.

    Article  CAS  Google Scholar 

  7. Dan, N. P., C. Visvanathan, and B. Basu (2003) Comparative evaluation of yeast and bacterial treatment of high salinity wastewater based on biokinetic coefficients. Bioresour. Technol. 87: 51–56.

    Article  CAS  Google Scholar 

  8. Dhamole, P. B., R. R. Nair, S. F. D’Souza, and S. S. Lele (2007) Denitrification of high nitrate waste. Bioresour. Technol. 98: 247–252.

    Article  CAS  Google Scholar 

  9. Foglar, L., F. Briski, L. Sipos, and M. Vukovic (2005) High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresour. Technol. 96: 879–888.

    Article  CAS  Google Scholar 

  10. Liao, R., K. Shen, A. Li, P. Shi, Y. Li, Q. Shi, and Z. Wang (2013) High-nitrate wastewater treatment in an expanded granular sludge bed reactor and microbial diversity using 454 pyrosequencing analysis. Bioresour. Technol. 134: 190–197.

    Article  CAS  Google Scholar 

  11. Nair, R. R., P. B. Dhamole, S. S. Lele, and S. F. D’Souza (2007) Biological denitrification of high strength nitrate waste using preadapted denitrifying sludge. Chemosphere 67: 1612–1617.

    Article  CAS  Google Scholar 

  12. Chanjae, P. (2000) The Effect of High Salinity on Denitrification of Concentrated Nitrate Wastewaters. M. S. Thesis, University of Nevada, Reno, USA.

    Google Scholar 

  13. Duncan, B. (1995) Effect of Ionic Strength on Denitrification of a High Salt, High Nitrate Brine Simulating Rocky Flats Evaporation Pond Water using Activated Sludge. M. S. Thesis, University of Colorado, Boulder, CO.

    Google Scholar 

  14. Glass, C. H. and J. Silverstein (1999) Denitrification of high nitrate, high salinity wastewater. Water Res. 33: 223–229.

    Article  CAS  Google Scholar 

  15. Liu, Z., T. Z. DeSantis, G. L. Andersen, and R. Knight (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequences. Nucleic Acids Res. 36: e120.

    Article  Google Scholar 

  16. Krause, L., N. N. Diaz, Z. Goesmann, K. S. Scott, T. W. Nattkemper, F. Rohwer, R. Edwards, and J. Stoye (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res. 36: 2230–2239.

    Article  CAS  Google Scholar 

  17. Petrosino, J. F., S. Highlander, R. A. Luna, R. A. Gibbs, and J. Versalovic (2009) Metagenomic pyrosequencing and microbial identification. Clin. Chem. 55: 856–866.

    Article  CAS  Google Scholar 

  18. Kwon, S., T. S. Kim, G. H. Yu, J. H. Jung, and H. D. Park (2010) Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J. Microbiol. Biotechnol. 20: 1717–1723.

    Google Scholar 

  19. Ye, L., M. F. Shao, T. Zhang, A. H. Y. Tong, and S. Lok (2011) Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing. Water Res. 45: 4390–4398.

    Article  CAS  Google Scholar 

  20. Chou, H. H., J. S. Huang, J. H. Jheng, and R. Ohara (2008) Influencing effect of intra-granule mass transfer in expanded granular sludge bed reactors treating an inhibitory substrate. Bioresour. Technol. 99: 3403–3410.

    Article  CAS  Google Scholar 

  21. American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater. 17th ed., APHA, NY.

    Google Scholar 

  22. Shah, V., S. Shah, M. S. Kambhampati, J. Ambrose, and N. Smith (2011) Bacterial and archaea community present in the pine barrens forest of long island, NY: Unusually high percentage of ammonia oxidizing bacteria. PLoS ONE 6: e26263.

    Article  CAS  Google Scholar 

  23. Davis, L. M. G., I. Martínez, J. Walter, C. Goin, and R. W. Hutkins (2011) Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE 6: e25200.

    Article  CAS  Google Scholar 

  24. Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, and R. J. Farris (2009) The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: 141–145.

    Article  Google Scholar 

  25. Zhang, T., M. F. Shao, and L. Ye (2011) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME. J. 11: 1–11.

    CAS  Google Scholar 

  26. Nawrocki, E. P. and S. R. Eddy (2007) Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput. Biol. 3: e56.

    Article  Google Scholar 

  27. Aminzadeh, B., A. Torabian, A. A. Azimi, R. Nabi Bidhendi Gh, and N. Mehrdadi (2010) Salt inhibition effects on simultaneous heterotrophic/autotrophic denitrification of high nitrate wastewater. Int. J. Environ. Res. 4: 255–262.

    CAS  Google Scholar 

  28. Bae, B. U., Y. H. Jung, W. W. Han, and H. S. Shin (2002) Improved brine recycling during nitrate removal using ion exchange. Water Res. 36: 3330–3340.

    Article  CAS  Google Scholar 

  29. Gu, J. D., W. Qiu, A. Koenig, and Y. Fan (2004) Removal of high NO3 —concentrations in saline water through autotrophic denitrification by the bacterium Thiobacillus denitrificans strain MP. Water Sci. Technol. 49: 105–112.

    CAS  Google Scholar 

  30. Osaka, T., K. Shirotani, S. Yoshie, and S. Tsuneda (2008) Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Res. 42: 3709–3718.

    Article  CAS  Google Scholar 

  31. Yoshie, S., N. Noda, T. Miyano, S. Tsuneda, A. Hirata, and Y. Inamori (2002) Characterization of microbial community in nitrogen removal process of metallurgic wastewater by PCRDGGE. Water Sci. Technol. 46: 333–336.

    Google Scholar 

  32. Kargi, F. and A. R. Dincer (1998) Saline wastewater treatment by halophile supplemented activated sludge culture in an aerated rotating biodisc contactor. Enz. Microb. Technol. 22: 427–433.

    Article  CAS  Google Scholar 

  33. Kapdan, I. K. and B. Boylan (2008) Batch treatment of saline wastewater by — Halanaerobium lacusrosei in an anaerobic packed bed reactor. J. Chem. Technol. Biotechnol. 84: 34–38.

    Article  Google Scholar 

  34. Vyrides, I., H. Santos, A. Mingote, M. J. Ray, and D. C. Stuckey (2010) Are compatible solutes compatible with biological treatment of saline wastewater? Batch and continuous studies using submerged anaerobic membrane bioreactors (SAMBRs). Environ. Sci. Technol. 44: 7437–7442.

    Article  CAS  Google Scholar 

  35. Bowman, J. S., S. Rasmussen, N. Blom, J. W. Deming, S. Rysgaard, and T. Sicheritz-Ponten (2012) Microbial community structure of Arctic multiyear sea ice and surface seawater by 454 sequencing of the 16S RNA gene. ISME. J. 6: 11–20.

    Article  CAS  Google Scholar 

  36. Hughes, J. B. and J. J. Hellmann (2005) The application of rarefaction techniques to molecular inventories of microbial diversity. In: Leadbetter J. E. (ed.), Methods Enzymol. 397: 292–308.

    Article  CAS  Google Scholar 

  37. Roesch, L., R. Fulthorpe, A. Riva, G. Casella, A. Hadwin, and A. Kent (2007) Pyrosequencing enumerates and contrasts soil microbial diversity. ISME. J. 1: 283–290.

    CAS  Google Scholar 

  38. Hu, M., X. H. Wang, X. H. Wen, and Y. Xia (2012) Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis. Bioresour. Technol. 117: 72–79.

    Article  CAS  Google Scholar 

  39. Zhao, G., F. Ma, L. Wei, and H. Chua (2012) Using rice straw fermentation liquor to produce bioflocculants during an anaerobic dry fermentation process. Bioresour. Technol. 113: 83–88.

    Article  CAS  Google Scholar 

  40. Yoshie, S., N. Noda, T. Miyano, S. Tsuneda, A. Hirata, and Y. Inamori (2001) Microbial community analysis in the denitrification process of saline-wastewater by denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA and the cultivation method. J. Biosci. Bioeng. 92: 346–353.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Min Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, R., Li, Y., Wang, Z. et al. 454 pyrosequencing analysis on microbial diversity of an expanded granular sludge bed reactor treating high NaCl and nitrate concentration wastewater. Biotechnol Bioproc E 19, 183–190 (2014). https://doi.org/10.1007/s12257-013-0387-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0387-0

Keywords

Navigation