Skip to main content
Log in

A comparative study on the stability and structure of two different green fluorescent proteins in organic co-solvent systems

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Green fluorescent protein (GFP) has been used as a reporter marker in a wide range of biological and bioengineering studies. The expanded use of GFP in the field of biosensors, biochips and bio-conjugations requires the stability of GFP in organic co-solvent systems. This prompted us to examine the kinetic stability of two different GFP sequences, n-GFP and s-GFP, showing different folding robustness and thermodynamic stability, under a range of organic co-solvent systems. n-GFP and s-GFP are variants whose biophysical properties are comparable to wild type and super folder GFPs, respectively. The stability of n-GFP and s-GFP in 50% water-miscible organic solvents showed that s-GFP with higher thermodynamic stability exhibited much higher stability against organic solvents than n-GFP, which has lower thermodynamic stability. s-GFP was quite stable even in 90% organic solvents. Circular dichroism analysis confirmed that s-GFP maintained its native structure in organic co-solvent systems, whereas n-GFP showed structural variations under these conditions. Four highly fluctuating loop regions were identified from molecular dynamic simulations under the organic cosolvent conditions. A structural comparison of n-GFP and s-GFP suggested that the improved kinetic stability of s-GFP was due to its larger number of hydrogen bonds and salt-bridges that were present in four loop regions. This study suggests that thermodynamically stable s-GFP can be a good choice for use under harsh organic co-solvent conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsien, R. Y. (1998) The green fluorescent protein. Annu. Rev. Biochem. 67: 509–544.

    Article  CAS  Google Scholar 

  2. Ormö, M., A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien, and S. J. Remington (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Sci. 273: 1392–1395.

    Article  Google Scholar 

  3. Yang, F., L. G. Moss, and G. N. Phillips (1996) The molecular structure of green fluorescent protein. Nat. Biotechnol. 14: 1246–1251.

    Article  CAS  Google Scholar 

  4. Sample, V., R. H. Newman, and J. Zhang (2009) The structure and function of fluorescent proteins. Chem. Soc. Rev. 38: 2852–2864.

    Article  CAS  Google Scholar 

  5. Cho, H. Y., M. A. Kadir, B. -S. Kim, H. S. Han, S. Nagasundarapandian, Y. -R. Kim, S. B. Ko, S. -G. Lee, and H. -J. Paik (2011) Synthesis of well-defined (Nitrilotriacetic Acid)-end-functionalized polystyrenes and their bioconjugation with histidine-tagged green fluorescent proteins. Macromol. 44: 4672–4680.

    Article  CAS  Google Scholar 

  6. Kadir, M. A., S. J. Kim, E. -J. Ha, H. Y. Cho, B. -S. Kim, D. Choi, S. -G. Lee, B. G. Kim, S. -W. Kim, and H. -J. Paik (2012) Encapsulation of nanoparticles using nitrilotriacetic acid endfunctionalized polystyrenes and their application for the separation of proteins. Adv. Funct. Mater. 22: 4032–4037.

    Article  CAS  Google Scholar 

  7. Nagasundarapandian, S., L. Merkel, N. Budisa, R. Govindan, N. Ayyadurai, S. Sriram, H. Yun, and S. -G. Lee (2010) Engineering protein sequence composition for folding robustness renders efficient noncanonical amino acid incorporations. ChemBioChem. 11: 2521–2524.

    Article  CAS  Google Scholar 

  8. Ayyadurai, N., K. Deepankumar, N. Prabhu, N. Budisa, and H. Yun (2012) Evaluation and biosynthetic incorporation of chlorotyrosine into recombinant proteins. Biotechnol. Bioproc. Eng. 17: 679–686.

    Article  CAS  Google Scholar 

  9. Sanchez-Ruiz, J. M. (2010) Protein kinetic stability. Biophys. Chem. 148: 1–15.

    Article  CAS  Google Scholar 

  10. Ayyadurai, N., R. Neelamegam, S. Nagasundarapandian, S. Edwardraja, H. Park, S. Lee, T. Yoo, H. Yoon, and S. -G. Lee (2009) Importance of expression system in the production of unnatural recombinant proteins in Escherichia coli. Biotechnol. Bioproc. Eng. 14: 257–265.

    Article  CAS  Google Scholar 

  11. Campanini, B., S. Bologna, F. Cannone, G. Chirico, A. Mozzarelli, and S. Bettati (2005) Unfolding of green fluorescent protein mut2 in wet nanoporous silica gels. Protein Sci. 14: 1125–1133.

    Article  CAS  Google Scholar 

  12. Whitmore, L. and B. A. Wallace (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res. 32: 668–673.

    Article  Google Scholar 

  13. Whitmore, L. and B. A. Wallace (2008) Protein secondary structure analyses from circular dichroism spectroscopy: Methods and reference databases. Biopolymers 89: 392–400.

    Article  CAS  Google Scholar 

  14. Pedelacq, J. -D., S. Cabantous, T. Tran, T. C. Terwilliger, and G. S. Waldo (2006) Engineering and characterization of a super folder green fluorescent protein. Nat. Biotechnol. 24: 79–88.

    Article  CAS  Google Scholar 

  15. Martí-Renom, M. A., A. C. Stuart, A. Fiser, R. Sánchez, F. Melo, and A. Šali (2000) Comparative protein structure modeling of genes and genomes. Annu Rev. Biophys. Biomol. Struct. 29: 291–325.

    Article  Google Scholar 

  16. Hess, B., C. Kutzner, D. van der Spoel, and E. Lindahl (2008) GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4: 435–447.

    Article  CAS  Google Scholar 

  17. Schuttelkopf, A. W. and D. M. F. van Aalten (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D 60: 1355–1363.

    Google Scholar 

  18. Cormack, B. P., R. H. Valdivia, and S. Falkow (1996) FACSoptimized mutants of the green fluorescent protein (GFP). Gene. 173: 33–38.

    Article  CAS  Google Scholar 

  19. Bulter, T., S. -G. Lee, W. W. Wong, E. Fung, M. R. Connor, and J. C. Liao (2004) Design of artificial cell-cell communication using gene and metabolic networks. Proc. Natl. Acad. Sci. U.S.A. 101: 2299–2304.

    Article  CAS  Google Scholar 

  20. Park, H., J. Joo, K. Park, and Y. Yoo (2012) Stabilization of Candida antarctica lipase B in hydrophilic organic solvent by rational design of hydrogen bond. Biotechnol. Bioproc. Eng. 17: 722–728.

    Article  CAS  Google Scholar 

  21. Penna, T., M. Ishii, A. Junior, and O. Cholewa (2004) Thermal stability of recombinant green fluorescent protein (GFPuv) at various pH values. Appl. Biochem. Biotechnol. 114: 469–483.

    Article  Google Scholar 

  22. de Lencastre Novaes, L. C., P. G. Mazzola, A. Pessoa, and T. C. V. Penna (2010) Effect of polyethylene glycol on the thermal stability of green fluorescent protein. Biotechnol. Prog. 26: 252–256.

    Google Scholar 

  23. Alkaabi, K., A. Yafea, and S. Ashraf (2005) Effect of pH on thermal- and chemical-induced denaturation of GFP. Appl. Biochem. Biotechnol. 126: 149–156.

    Article  CAS  Google Scholar 

  24. Roth, A. F. and W. W. Ward (1997) Conformational stability after protease treatment in Aequorea GFP. Photochem. Photobiol. 65: 37: 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun-Gu Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghunathan, G., Sokalingam, S., Soundrarajan, N. et al. A comparative study on the stability and structure of two different green fluorescent proteins in organic co-solvent systems. Biotechnol Bioproc E 18, 342–349 (2013). https://doi.org/10.1007/s12257-012-0579-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0579-z

Keywords

Navigation