Skip to main content
Log in

Biosequestration of carbon dioxide using a silicified carbonic anhydrase catalyst

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Using recombinant DNA technology, we constructed a dual fusion gene expression plasmid, pRCAH-30, encoding carbonic anhydrase (CA) from the cyanobacterium Synechocystis sp. PCC6803, an R5 peptide sequence, and an affinity (His)6 tag, to allow the simultaneous purification and immobilization of the encoded fusion enzyme, termed RCAH. The expressed fusion protein was approximately 30 kDa, and could be rapidly purified using affinity resins. To enhance enzyme activity, the R5 peptide facilitated immobilization by means of silicification with tetramethoxysilane; the aggregated particles were approximately 300 nm in diameter. Activity tests revealed that the enzyme functioned optimally between pH 7.0 and 7.5; maximum stability was achieved between 25 and 45°C, at pH 6.0 ∼ 8.0. Activity of the fusion enzyme persisted, even after encapsulation by biomimetic silicification. In fact, silicone embedding stabilized the enzyme structure, thereby increasing its stability and reusability rate under different environmental conditions. In addition, the silicified enzyme reduced waste CO2 gas from 800 to 42 ppm, resulting in a gas capture rate of 94.7% after conversion. Thus, the construct developed in this study can be effectively utilized for the sequestration of industrial waste CO2 gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dreybrodt, W., J. Lauckner, Z. H. Liu, U. Svensson, and D. Buhman (1996) The kinetics of the reaction CO2 + H2O → H + + HCO3−, as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3. Geochimica et Cosmochimica Acta. 60: 3375–3381.

    Article  CAS  Google Scholar 

  2. Bond, G. M., J. Stringer, D. K. Brandvold, F. A. Simsek, M. G. Medina, and G. Egeland (2001) Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy Fuels 15: 309–316.

    Article  CAS  Google Scholar 

  3. Liu, N., G. M. Bond, A. Abel, B. J. McPherson, and J. Stringer (2005) Biomimetic sequestration of CO2 on carbonate form: Role of produced waters and other brines. Fuel Proc. Technol. 86: 1615–1625.

    Article  CAS  Google Scholar 

  4. Mirjafari, P., K. Asghari, and N. Mahinpey (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind. Eng. Chem. Res. 46: 921–926.

    Article  CAS  Google Scholar 

  5. Cheng, L. -Y., Y. -T. Long, H. -B. Kraatz, and H. Tian (2011) Evaluation of an immobilized artificial carbonic anhydrase model for CO2 sequestration. Chem. Sci. 2: 1515–1518.

    Article  CAS  Google Scholar 

  6. Lindskog, S. (1997) Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 74: 1–20.

    Article  CAS  Google Scholar 

  7. Badjic J. D. and N. M. Kostic (1999) Effects of encapsulation in sol-gel silica glass on esterase activity, conformational stability, and unfolding of bovine carbonic anhydrase II. Chem. Mater. 11: 3671–3679.

    Article  CAS  Google Scholar 

  8. Hosseinkhani, S. and M. N. Gorgani (2003) Partial unfolding of carbonic anhydrase provides a method for its immobilization on hydrophobic adsorbents and protects it against irreversible thermoinactivation. Enz. Microb. Technol. 33: 179–184.

    Article  CAS  Google Scholar 

  9. Drevon G. F., C. Unbarke, and A. J. Russell (2003) Enzyme-containing michael-adduct-based coatings. Biomacromol. 4: 675–682.

    Article  CAS  Google Scholar 

  10. Cheng L. H., L. Zhang, H. L. Chen, and C. J. Gao (2008) Hollow fiber contained hydrogel-CA membrane contactor for carbon dioxide removal from the enclosed spaces. J. Memb. Sci. 324: 33–43.

    Article  CAS  Google Scholar 

  11. Ozdemir, E. (2009) Biomimetic CO2 sequestration: 1. Immobilization of carbonic anhydrase within polyurethane foam. Energy Fuels 23: 5725–5730.

    Article  CAS  Google Scholar 

  12. Ellerby, L. M., C. R. Nishida, F. Nishida, S. A. Yamanaka, B. Dunn, J. S. Valentine, and J. I. Zink (1992) Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Sci. 255: 1113–1115.

    Article  CAS  Google Scholar 

  13. Gil, I. and A. Ballesteros (2000) Bioencapsulation within synthetic polymers (Part 1): Sol-gel encapsulated biologicals. Trends Biotechnol. 18: 282–296.

    Article  Google Scholar 

  14. Besanger, T. R., Y. Chen, A. K. Deisingh, R. Hodgson, W. Jin, S. Mayer, M. A. Brook, and J. D. Brennan (2003) Screening of inhibitors using enzymes entrapped in sol-gel-derived materials. Anal. Chem. 75: 2382–2391.

    Article  CAS  Google Scholar 

  15. Cruz-Aguado, J. A., Y. Chen, Z. Zhang, N. H. Elowe, M. A. Brook, and J. D. Brennan (2004) Ultrasensitive ATP detection using firefly luciferase entrapped in sugar-modified sol-gelderived silica. J. Am. Chem. Soc. 126: 6878–6879.

    Article  CAS  Google Scholar 

  16. Roth, K. M., Y. Zhou, W. Yang, and D. E. Morse (2005) Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH. J. Am. Chem. Soc. 127: 325–330.

    Article  CAS  Google Scholar 

  17. Kroger, N., R. Deutzmann, and M. Sumper (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Sci. 286: 1129–1132.

    Article  CAS  Google Scholar 

  18. Kroger, N., R. Deutzmann, C. Bergsdorf, and M. Sumper (2000) Species-specific polyamines from diatoms control silica mor-phology. Proc. Natl. Acad. Sci. U S A. 97: 14133–14138.

    Article  CAS  Google Scholar 

  19. Kroger, N., S. Lorenz, E. Brunner, and M. Sumper (2002) Selfassembly of highly phosphorylated silaffins and the function in biosilica morphogenesis. Sci. 298: 584–586.

    Article  Google Scholar 

  20. Chien, L. J. and C. K. Lee (2008) Biosilicification of Dual-Fusion Enzyme Immobilized on Magnetic Nanoparticle. Biotechnol. Bioeng. 100: 223–230.

    Article  CAS  Google Scholar 

  21. Hou, W. C., H. J. Chen, and Y. H. Lin (2000) Dioscorins from different Dioscorea species all exhibit both carbonic anhydrase and trypsin inhibitor activities. Bot. Bull. Acad. Sinica. 41: 191–196.

    CAS  Google Scholar 

  22. Luckarift H. R., J. C. Spain, R. R. Naik, and M. O. Stone (2004) Enzyme immobilization in a biomimetic silica support. Nat. Biotechnol. 22: 211–213.

    Article  CAS  Google Scholar 

  23. Luckarift, H. R., G. R. Johnson, and J. C. Spain (2006) Silicaimmobilized enzyme reactors; application to cholinesterase-inhibition studies. J. Chromatogr. B Biomed. Appl. 843: 310–316.

    Article  CAS  Google Scholar 

  24. Khalifah, R. G. and D. N. Silverman (1990) Carbonic anhydrase kinetics and molecular function. pp. 49–70. In: S. J. Dodgson, R. E. Tashian, G. Gros, and N. D. Carter (eds.). The carbonic anhydrase: Cellular physiology and molecular genetics. Plenum press, NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Jung Chien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chien, LJ., Sureshkumar, M., Hsieh, HH. et al. Biosequestration of carbon dioxide using a silicified carbonic anhydrase catalyst. Biotechnol Bioproc E 18, 567–574 (2013). https://doi.org/10.1007/s12257-012-0398-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-012-0398-2

Keywords

Navigation