Skip to main content
Log in

Re-examination of metabolic fluxes in Escherichia coli during anaerobic fermentation of glucose using 13C labeling experiments and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Improved design of metabolic flux estimation using mixed label 13C labeling experiments and identifiability analysis motivated re-examination of metabolic fluxes during anaerobic fermentation in the Escherichia coli. Comprehensive metabolic flux maps were determined by using a mixture of differently labeled glucose and compared to conventional flux maps obtained using extracellular measurements and comprehensive metabolic flux maps obtained using only U-13C glucose as the substrate. As expected, conventional flux analysis performs poorly in comparison to 13C-MFA, especially in the Embden-Meyerhof-Parnas (EMP) and pentose phosphate (PP) pathways. Identifiability analysis indicated and experiments confirmed that a mixture of 10% U-l3C glucose, 25% 1-13C glucose, and 65% naturally labeled glucose significantly improved the statistical quality of all calculated fluxes in the PP pathway, the EMP pathway, the anaplerotic reactions, and the tricarboxylic acid cycle. Modifying the network topology for the presence and absence of the Entner-Doudoroff pathway and the glyoxylate shunt did not affect the value or quality of estimated fluxes significantly. Extracellular measurement of formate production was necessary for the accurate estimation of the fluxes around the formate node.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephanopoulos, G., A. A. Aristidou, and J. Nielsen (1998) Metabolic Engineering: Principles and Methodology. Academic Press, San Diego, CA, USA.

    Google Scholar 

  2. Romeo, T. and J. L. Snoep (2005) Glycolysis and flux control. In: A. Bock, R. Curtiss III, J. B. Kaper, P. D. Karp, F. C. Neidhardt, T. Nystrom, J. M. Slauch, C. L. Squires, and D. Ussery (eds.). EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington DC, USA.

    Google Scholar 

  3. Nielsen, J. (2003) It is all about metabolic fluxes. J. Bacteriol. 185: 7031–7035.

    Article  CAS  Google Scholar 

  4. Stephanopoulos, G. (1999) Metabolic fluxes and metabolic engineering. Metab. Eng. 1: 1–11.

    Article  CAS  Google Scholar 

  5. Klapa, M. I., S. M. Park, A. J. Sinskey, and G. Stephanopoulos (1999) Metabolite and isotopomer balancing in the analysis of metabolic cycles: I. Theory. Biotechnol. Bioeng. 62: 375–391.

    Article  CAS  Google Scholar 

  6. Wiechert, W., M. Möllney, S. Petersen, and A. A. de Graaf (2001) A universal framework for 13C metabolic flux analysis. Metab. Eng. 3: 265–283.

    Article  CAS  Google Scholar 

  7. Szyperski, T. (1995) Biosynthetically directed fractional 13Clabeling of proteinogenic amino acids: An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232: 433–448.

    Article  CAS  Google Scholar 

  8. Grivet, J. P. (2009) NMR for microbiology: In vivo and in situ applications. Prog. Nucl. Mag. Res. Sp. 54: 1–53.

    Article  CAS  Google Scholar 

  9. Szypreski, T., J. E. Bailey, and K. Wuthrich (1996) Detecting and dissecting metabolic uxes using biosynthetic fractional 13C labeling and two-dimensional NMR spectroscopy. Trends Biotech. 14: 453–458.

    Article  Google Scholar 

  10. Fischer, E. and U. Sauer (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GCMS. Eur. J. Biochem. 270: 880–891.

    Article  CAS  Google Scholar 

  11. Fischer, E. and U. Sauer (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat. Genet. 37: 636–640.

    Article  CAS  Google Scholar 

  12. Tang, Y. J., H. G. Martin, S. Myers, S. Rodriguez, E. K. Baidoo, and J. D. Keasling (2009) Advances in analysis of microbial metabolic fluxes via 13C isotopic labeling. Mass Spectrom. Rev. 28: 362–375.

    Article  CAS  Google Scholar 

  13. Emmerling, M., M. Dauner, A. Ponti, J. Fiaux, M. Hochuli, T. Szyperski, K. Wuthrich, J. E. Bailey, and U. Sauer (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J. Bacteriol. 184: 152–164.

    Article  CAS  Google Scholar 

  14. Al Zaid Siddiquee, K., M. J. Arauzo-Bravo, and K. Shimizu (2004) Metabolic flux analysis of pykF gene knockout Escherichia coli based on 13C-labeling experiments together with measurements of enzyme activities and intracellular metabolite concentrations. Appl. Microbiol. Biotechnol. 63: 407–417.

    Article  Google Scholar 

  15. Zhao, J. and K. Shimizu (2003) Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method. J Biotechnol. 101: 101–117.

    Article  CAS  Google Scholar 

  16. Schuetz, R., L. Kuepfer, and U. Sauer (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol. 3: 119.

    Article  Google Scholar 

  17. Sauer, U., D. R. Lasko, J. Fiaux, M. Hochuli, R. Glaser, T. Szyperski, K. Wuthrich, and J. E. Bailey (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181: 6679–6688.

    CAS  Google Scholar 

  18. Sauer, U., F. Canonaco, S. Heri, A. Perrenoud, and E. Fischer (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J. Biol. Chem. 279: 6613–6619.

    Article  CAS  Google Scholar 

  19. Nanchen, A., A. Schicker, and U. Sauer (2006) Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli. Appl. Environ. Microbiol. 72: 1164–1172.

    Article  CAS  Google Scholar 

  20. Fong, S. S., A. Nanchen, B. O. Palsson, and U. Sauer (2006) Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes. J. Biol. Chem. 281: 8024–8033.

    Article  CAS  Google Scholar 

  21. Suthers, P. F., A. P. Burgard, M. S. Dasika, F. Nowroozi, S. Van Dien, J. D. Keasling, and C. D. Maranas (2007) Metabolic flux elucidation for large-scale models using 13C labeled isotopes. Metab. Eng. 9: 387–405.

    Article  CAS  Google Scholar 

  22. Fischer, E. and U. Sauer (2003) A novel metabolic cycle catalyzes glucose oxidation and anaplerosis in hungry Escherichia coli. J. Biol. Chem. 278: 46446–46451.

    Article  CAS  Google Scholar 

  23. Schmidt, K., J. Nielsen, and J. Villadsen (1999) Quantitative analysis of metabolite fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J. Biotechnol. 71: 175–190.

    Article  CAS  Google Scholar 

  24. Ingraham, J. L., O. Maaloe, and F. C. Neidhardt (1983) Growth of the Bacterial Cell. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  25. Neidhardt, F. C., P. L. Bloch, and D. F. Smith (1974) Culture Medium for Enterobacteria. J. Bacteriol. 119: 736–747.

    CAS  Google Scholar 

  26. Szypreski, T. (1998) 13C-NMR, MS and metabolic ux balancing in biotechnology research. Q. Rev. Biophys. 31: 41–106.

    Article  Google Scholar 

  27. Johnson, B. A. and R. A. Blevins (1994) NMR View: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR. 4: 603–614.

    Article  CAS  Google Scholar 

  28. Sriram, G., D. B. Fulton, and J. V. Shanks (2007) Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by C-13 labeling and comprehensive bondomer balancing. Phytochem. 68: 2243–2257.

    Article  CAS  Google Scholar 

  29. Van Winden, W., D. Schipper, P. Verheijen, and J. Heijnen (2001) Innovations in generation and analysis of 2D [13C,1H] COSY NMR spectra for metabolic flux analysis purposes. Metab. Eng. 3: 322–343.

    Article  Google Scholar 

  30. Sriram, G., D. B. Fulton, V. V. Iyer, J. M. Peterson, R. Zhou, M. E. Westgate, M. H. Spalding, and J. V. Shanks (2004) Quantication of compartmented metabolic uxes in developing soybean embryos by employing biosynthetically directed fractional 13C labeling, two-dimensional (13C,1H) nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol. 136: 3043–3057.

    Article  CAS  Google Scholar 

  31. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992) Numerical Recipes in C: The Art of Scientific Computing. 2nd ed., Cambridge University Press, Cambridge, UK.

    Google Scholar 

  32. Arauzo-Bravo, M. J. and K. Shimizu (2003) An improved method for statistical analysis of metabolic flux analysis using isotopomer mapping matrices with analytical expressions. J. Biotechnol. 105: 117–133.

    Article  CAS  Google Scholar 

  33. Mollney, M., W. Wiechert, D. Kownatzki, and A. A. de Graaf (2006) Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. Biotechnol. Bioeng. 66: 86–103.

    Article  Google Scholar 

  34. Sawers, R. G. and D. P. Clark (2004) Fermentative pyruvate and acetyl-coenzyme A metabolism. In: A. Bock, R. Curtiss III, J. B. Kaper, P. D. Karp, F. C. Neidhardt, T. Nystrom, J. M. Slauch, C. L. Squires, and D. Ussery (eds.). EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington DC, USA.

    Google Scholar 

  35. Sawers, R. G., M. Blokesch, and A. Bock (2004) Anaerobic formate and hydrogen metabolism. In: A. Bock, R. Curtiss III, J. B. Kaper, P. D. Karp, F. C. Neidhardt, T. Nystrom, J. M. Slauch, C. L. Squires, and D. Ussery (eds.). EcoSal-Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington DC, USA.

    Google Scholar 

  36. Cozzone, A. J. (1998) Regulation of acetate metabolism by protein phosphorylation in enteric bacteria. Annu. Rev. Microbiol. 52: 127–164.

    Article  CAS  Google Scholar 

  37. Harris, R. K. (1983) Nuclear Magnetic Resonance Spectroscopy: A Physicochemical View. Pitman Books, London, UK.

    Google Scholar 

  38. Phue, J. N. and J. Shiloach (2004) Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J. Biotechnol. 109: 21–30.

    Article  CAS  Google Scholar 

  39. Van de Walle, M. and J. Shiloach (1998) Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol. Bioeng. 57: 71–78.

    Article  Google Scholar 

  40. Dauner, M., J. E. Bailey, and U. Sauer (2000) Metabolic flux analysis with a comprehensice isotopomer model in Bacillus subtilis. Biotechnol. Bioeng. 76: 144–156.

    Article  Google Scholar 

  41. Schmidt, K., L. C. Norregaard, B. Pedersen, A. Meissner, J. Duus, J. Nielsen, and J. Villadsen (1999) Quantification of intracellular metabolic fluxes from fractional enrichment 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components. Metab. Eng. 1: 166–179.

    Article  CAS  Google Scholar 

  42. Fischer, E., N. Zamboni, and U. Sauer (2004) High-throughput metabolic flux analysis based on gas chromatography-mass spectrometry derived 13C constraints. Anal. Biochem. 325: 308–316.

    Article  CAS  Google Scholar 

  43. Sauer, U. and B. J. Eikmanns (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev. 29: 765–794.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline V. Shanks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, M.K., Yoon, J.M., Gonzalez, R. et al. Re-examination of metabolic fluxes in Escherichia coli during anaerobic fermentation of glucose using 13C labeling experiments and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. Biotechnol Bioproc E 16, 419–437 (2011). https://doi.org/10.1007/s12257-010-0449-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0449-5

Keywords

Navigation