Skip to main content
Log in

Biotransformation in a microreactor: New method for production of hexanal

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, enzymatic oxidation of hexanol to hexanal (green note fragrance) using NAD+ dependent commercial alcohol dehydrogenase from S. cerevisiae was conducted in continuously operated tubular microreactors with internal volumes of 6 and 13 μL and in a tubular microreactor with a volume of 2 μL that was equipped with internal micromixers. Flow profiles in microchannel were observed in experiments in which the aqueous phase was stained brilliant blue and the hexane was kept colourless. The effects of enzyme and coenzyme inlet concentrations and flow ratios of the immiscible phases on the conversion of hexanol and the volumetric productivity of hexanal were analyzed. Significant improvement in the conversion of hexanol when compared to the classical macroscale process was obtained for c i,hexanol = 5.5 mmol/L, c i,NAD+ = 0.55 mmol/L, and γ i,ADH = 0.092 g/L. In the 6 μL microreactor 11.78% conversion of hexanol was attained after 72 sec, while in the macroscale process 5.3% conversion of hexanol was reached after 180 sec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Santiago-Gómez M. P., H. T. Thanh, J. D. Coninck, R. Cachon, S. Kermasha, J. M. Belin, P. Gervais, and F. Hisson (2009) Modeling hexanal production in oxido-reducing conditions by the yeast Yarrowia lipolytica. Proc. Biochem. 44: 1013–1018.

    Article  Google Scholar 

  2. Shade F., J. E. Thompson, and R. L. Legge (2003) Use of a plantderived enzyme template for the production of the green-note volatile hexanal. Biotechnol. Bioeng. 84: 265–273.

    Article  Google Scholar 

  3. Whitehead, I. M., B. L. Muller, and C. Dean (1995) Industrial use of soybean lipoxygenase forthe production of natural green note flavor compounds. Cereal Foods World 40: 193–197.

    CAS  Google Scholar 

  4. Gargouri, M., N. B. Akach, and M. D. Legoy (2004) Coupled hydroperoxide lyase and alcohol dehydrogenase for selective synthesis of aldehyde or alcohol. Appl. Biochem. Biotechnol. 119: 171–180.

    Article  CAS  Google Scholar 

  5. Hildebrand D. F. (1989) Lipoxgenases. Plant Physiol. 76: 249–253.

    Article  CAS  Google Scholar 

  6. Márczy, J. S., A. S. Németh, Z. Samu, Á. Háger-Veress, and B. Szajáni (2002) Production of hexanal form hydrolyzed sunflower oil by lipoxygenase and hydroperoxid lyase enzymes. Biotechnol. Lett. 24: 1673–1675.

    Article  Google Scholar 

  7. Brunerie, P. and Y. Koziet (1197) Process for producing natural cis-3-hexenol from unsaturated fatty acids. US Patent 5,620,879.

  8. Yokoyama, T. and N. Yamagata (2001) Hydrogenation of carboxylic acids to the corresponding aldehydes. Appl. Catal. A: General 221: 227–239.

    Article  CAS  Google Scholar 

  9. Akacha, N. B. and M. Gargouri (2009) Enzymatic synthesis of green notes with hydroperoxide-lyase from olive leaves and alcohol dehydrogenase from yeast in liquid/gas reactor. Proc. Biochem. 44: 1122–1127.

    Article  Google Scholar 

  10. Jensen K. F. (2001) Microreaction engineering- is small better?. Chem. Eng. Sci. 56: 293–303.

    Article  CAS  Google Scholar 

  11. Ehrfeld, W., V. Hessel, and H. Löwe (2000) Microreactors: New technology for modern chemistry. Weinheim: Wiley-VCH.

    Google Scholar 

  12. Roberge, D. M., L. Durcy, N. Bieler, P. Cretton, and B. Zimmermann (2005) Microreactor technology: A revolution for the fine chemical and pharmaceutical industries?. Chem. Eng. Technol. 28: 318–323.

    Article  CAS  Google Scholar 

  13. Wörtz, B., K. P. Jäckel, T. Richter, and A. Wolf (2001) Micoreactors — a new efficient tool for reactor developments. Chem. Eng. Technol. 24: 138–142.

    Article  Google Scholar 

  14. Geyer, K., J. D. Codee, and P. H. Seeberger (2006) Microreactors as tools for synthetic chemist-the chemists’ round bottomed flask of the 21 st century?. Chem. Eur. J. 12: 8434–8442.

    Article  CAS  Google Scholar 

  15. Urban, P. L., D. M. Goodall, C. Neil, and N. C. Bruce (2006) Enzymatic microreactors in chemical analysis and kinetic studies. Biotechnol. Adv. 24: 42–57.

    Article  CAS  Google Scholar 

  16. Posthuma-Trumpie, G. A., K. Venema, W. J. H. van Berkel, and J. Korf (2007) A low perfusion rate microreactor for continuous monitoring of enzyme characteristics: Application to glucose oxidase. Anal. Bioanal. Chem. 389: 2029–2033.

    Article  CAS  Google Scholar 

  17. Kashid, M. N., F. Platte, D. W. Agar, and S. Turek (2007) Computational modeling of slug flow in capillary microreactors. J. Comput. Appl. Math. 203: 487–497.

    Article  Google Scholar 

  18. Burns, J. R. and C. Ramshaw (2001) The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab. Chip. 1: 10–15.

    Article  CAS  Google Scholar 

  19. Vrsalović Presečki, A. and Đ. Vasić Rački (2009) Mathematical modelling of the dehydrogenase catalyzed hexanol oxidation with coenzyme regeneration by NADH oxidase. Proc. Biochem. 44: 54–61.

    Article  Google Scholar 

  20. Karra-Chahbouni, M., S. Pulvin, A. Meziani, D. Thomas, D. Touraud, and W. Kunz (2003) Bioxidation of n-hexanol by alcohol oxidase and catalase in biphasic micellar systems without solvent. Biotechnol. Bioeng. 81: 27–32.

    Article  Google Scholar 

  21. Harries, N, J. R. Burns, D. A. Barrow, and C. Ramshaw (2003) A numerical model for segmented flow in a microreactor. Int. J. Heat Mass Transf. 46: 3313–3322.

    Article  CAS  Google Scholar 

  22. Vrsalović Presecki, A. (2006) Study of fumarase and alcohol dehydrogenase in the biotransformations. Ph.D. Thesis. University of Zagreb, Zagreb, Croatia.

    Google Scholar 

  23. Graveson, P., J. Branjeberg, and O. S. Jensen (1993) Microfluidics — a review. J. Micromech. Microeng. 3: 168–182.

    Article  Google Scholar 

  24. Hessel, V., H. Löwe, and F. Schönfeld (2005) Micromixers — a review on passive and active mixing principles. Chem. Eng. Sci. 60: 2479–2501.

    Article  CAS  Google Scholar 

  25. Hong, C. C., J. W. Choi, and H. Ahn (2001) A noveli n-plane passive micromixer using coanda effect. Proceedings of 5th Micro Total Analysis Systems Symposium. California, USA, pp. 31–33.

  26. Bhagat, S., A. Asgar, E. T. K. Peterson, and I. Papautsky (2007) A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J. Micromech. Microeng. 17: 1017–1024.

    Article  Google Scholar 

  27. Schenk, R., V. Hessel, C. Hofmann, J. Kiss, H. Löwe, and A. Ziogas (2004) Numbering-up of micro devices: A first liquidflow splitting unit. Chem. Eng. J. 101: 421–429.

    Article  CAS  Google Scholar 

  28. Žnidaršić-Plazl, P. and I. Plazl (2009) Modelling and experimental studies on lipase-catalyzed isoamyl acetate synthesis in microreactor. Proc. Biochem. 44: 1115–1121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Zelić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šalić, A., Tušek, A., Kurtanjek, Ž. et al. Biotransformation in a microreactor: New method for production of hexanal. Biotechnol Bioproc E 16, 495–504 (2011). https://doi.org/10.1007/s12257-010-0381-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0381-8

Keywords

Navigation