Skip to main content
Log in

Development of mutants of Melanocarpus albomyces for hyperproduction of xylanase

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The wild type filamentous fungus, Melanocarpus albomyces, produces many commercially valuable enzymes, including Xylanases and Xylan-debranching enzymes with low activity. In this paper, we report for the first time the development of M. albomyces mutants from vegetative spores. Profuse sporulation of M. albomyces was induced on Potato Carrot Agar medium. These spores, when subjected to chemical mutation, led to the isolation of the hyper-xylanase producing mutant, viz, M. albomyces IITD3A. Various parameters including number of spores, nitrogen source and C/N ratio of the medium were optimized for production of xylanase by the mutant in a shake flask culture. Under controlled pH at 7.8, the mutant produced highly active xylanase with 415 IU/mL after 36 h of growth on soluble alkaline lignocellulosic extract in a 14-L fermentor. The overall productivity of xylanase was 8-fold higher than the wild type culture with11, 530 IU/L/h. The enzyme can be easily stored at 37°C for 50 days by addition of a small amount of the preservative — thiomersal. Also, for long term storage, a lyophilized powder form of the enzyme can be used which retained 100% of its activity for > 50 days. When assayed at pH 7.5 and temperature 55°C, the xylanase retained 100% of its original activity, and also at pH 9.0, it retained > 50% of its activity for 2 h, which is promising for its application in the pulp and paper industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polizeli, M. L. T. M., A. C. S. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim (2005) Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577–591.

    Article  CAS  Google Scholar 

  2. Kang, M. K., P. J. Maeng, and Y. H. Rhee (1996) Purification and characterization of two xylanases from alkalophilic Cephalosporium sp. strain RYM-202. Appl. Environ. Microbiol. 62: 3480–3482.

    CAS  Google Scholar 

  3. Panagiotou, G., D. Kekos, B. J. Macris, and P. Christakopoulos (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind. Crops Produc. 18: 37–45.

    Article  CAS  Google Scholar 

  4. Saraswat, V. and V. S. Bisaria (1997) Biosynthesis of xylanolytic and xylan debranching enzymes in Melanocarpus albomyces IIS 68. J. Ferment. Bioeng. 83: 352–357.

    Article  CAS  Google Scholar 

  5. Chandra, R. K. and T. S. Chandra (1995) A cellulase-free xylanase from alkali-tolerant Aspergillus fischeri Fxn1. Biotechnol. Lett. 17: 309–314.

    Article  Google Scholar 

  6. Maheshwari, R. and P. T. Kamalam (1985) Isolation and culture of a thermophilic fungus, Melanocarpus albomyces and factors influencing the production and activity of xylanase. J. Gen. Microbiol. 131: 3017–3027.

    CAS  Google Scholar 

  7. Saraswat, V. and V. S. Bisaria (2000) Purification, characterization and substrate specificities of xylanase isoenzymes from Melanocarpus albomyces IIS 68. Biosci. Biotechnol. Biochem. 64: 1173–1180.

    Article  CAS  Google Scholar 

  8. Bisaria, V. S., S. Mishra, and V. Sahai (2002) Enzymatic prebleaching of Kraft pulps for paper manufacture. Proceedings of International Conference on Tropical Bioresources and Green Chemistry Strategy. October 27–31. Osaka, Japan.

  9. Kiiskinen, L. L., L. Viikari, and K. Kruus (2002) Purification and characterization of a novel laccase from the ascomycete Melanocarpus albomyces. Appl. Microbiol. Biotechnol. 59: 198–204.

    Article  CAS  Google Scholar 

  10. Kiiskinen, L. L., H. Palonen, M. Linder, L. Viikari, and K. Kruus (2004) Laccase from Melanocarpus albomyces binds effectively to cellulose. FEBS Lett. 576: 251–255.

    Article  CAS  Google Scholar 

  11. Hirvonen, M. and A. C. Papageorgiou (2003) Crystal structure of a family 45 endoglucanase from Melanocarpus albomyces: Mechanistic implications based on the free and cellobiose-bound forms. J. Mol. Biol. 329: 403–410.

    Article  CAS  Google Scholar 

  12. Kontkanen, H., M. Tenkanen, and T. Reinikainen (2006) Purification and characterization of a novel steryl esterase from Melanocarpus albomyces. Enz. Microb. Technol. 39: 265–273.

    Article  CAS  Google Scholar 

  13. Tatum, E. L., R. W. Barratt, and V. M. Cutter (1949) Chemical induction of colonial paramorphs in Neurospora and Syncephalastrum. Science 109: 509–511.

    Article  CAS  Google Scholar 

  14. Biely, P., D. Mislovicova, and T. Rudolf (1988) Remazol brilliant Blue-xylan: A soluble Chromogenic substrate for xylanases. Methods Enzymol. 160: 536–541.

    Article  CAS  Google Scholar 

  15. Sahai, V., S. Mishra, and V. S. Bisaria (2005) Cellulose-free nutrient medium for enhanced productivity and activity of cellulase-free enzymes. Indian Patent 1246/DEL/2005.

  16. Bailey, M. J., P. Biely, and K. Poutenan (1992) Laboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257–270.

    Article  CAS  Google Scholar 

  17. Miller, G. L. (1959) Use of dinitrosalicylic acid regent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  18. Skromne, I., O. Sanchez, and J. Aguirre (1995) Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiol. 141: 21–28.

    Article  CAS  Google Scholar 

  19. Morton, A. G. (1961) The induction of sporulation in mould fungi. Proc. Roy. Microscop. Soc. B 153: 548–569.

    Article  CAS  Google Scholar 

  20. Righelato, R. C., A. P. J. Trinci, S. J. Pirt, and A. Peat (1968) The influence of maintenance energy and growth rate on the metabolic activity, morphology and conidiation of Penicillium chrysogenum. J. Gen. Microbiol. 50: 399–412.

    CAS  Google Scholar 

  21. Wulf, P. D., W. Soetaert, D. Schwengers, and E. J. Vandamme (1996) Screening and mutational improvement of a D-ribose secreting Candida pelliculosa strain. J. Ferment. Bioeng. 82: 1–7.

    Article  Google Scholar 

  22. Smith, G. and C. Calam (1980) Variations in inocula and their influence on the productivity of antibiotic fermentations. Biotechnol. Lett. 2: 261–266.

    Article  CAS  Google Scholar 

  23. Papagianni, M. and M. Mattey (2006) Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelia morphology. Microb. Cell Fact. 5: 3.

    Article  Google Scholar 

  24. Haltrich, D., M. Preiss, and W. Steiner (1993) Optimization of a culture medium for increased xylanase production by a wild strain of Schizophyllum commune. Enz. Microb. Technol. 15: 854–860.

    Article  CAS  Google Scholar 

  25. Smith, D. C. and T. M. Wood (1991) Xylanase production by Aspergillus awamori: Development of a medium and optimization of the fermentation parameters for the production of extracellular xylanase and β-xylosidase while maintaining low protease production. Biotechnol. Bioeng. 38: 883–890.

    Article  CAS  Google Scholar 

  26. Song, A. R., X. M. Tian, G. F. Feng, and Y. Q. Zhang (2001) A study of the utilization of Pleurotus eryngii with different carbon and nitrogen sources. Acta Edulis Fungi 8: 10–14.

    Google Scholar 

  27. Qinnghe, C., Y. Xiaoyu, N. Tiangui, J. Cheng, and M. Qiugang (2004) The screening of culture conditions and properties of xylanase by white-rot fungus Pleurotus ostreatus. Proc. Biochem. 39: 1561–1566.

    Article  Google Scholar 

  28. Haltrich, D., B. Nidetzky, K. D. Kulbe, W. Steiner, and S. Zupancic (1996) Production of fungal xylanases. Bioresour. Technol. 58: 137–161.

    Article  CAS  Google Scholar 

  29. Dobrev, G. T., I. G. Pishtiyski, V. S. Stanchev, and R. Mircheva (2007) Optimization of nutrient medium containing agricultural wastes for xylanase production by Aspergillus niger B03 using optimal composite experimental design. Bioresour. Technol. 98: 2671–2678.

    Article  CAS  Google Scholar 

  30. Oliveira, L. A., A. L. F. Porto, and E. B. Tambourgi (2006) Production of xylanase and protease by Penicillium janthinellum CRC 87M-115 from different agricultural wastes. Bioresour. Technol. 97: 862–867.

    Article  CAS  Google Scholar 

  31. Dwivedi, P., V. Vivekanand, R. Ganguly, and R. P. Singh (2009) Parthenium sp. as a plant biomass for the production of alkalitolerant xylanase from mutant Penicillium oxalicum SAUE-3.510 in submerged fermentation. Biomass Bioener. 33: 581–588.

    Article  CAS  Google Scholar 

  32. Li, Y., F. Cui, Z. Liu, Y. Xu, and H. Zhao (2007) Improvement of xylanase production by Penicillium oxalicum ZH-30 using response surface methodology. Enz. Microb. Technol. 40: 1381–1388.

    Article  CAS  Google Scholar 

  33. Lichstein, H. C. and M. H. Soule (1944) Studies of the effect of sodium azide on microbic growth and respiration I. The action of sodium azide on microbic growth. J. Bact. 47: 221–230.

    CAS  Google Scholar 

  34. Magos, L. (2001) Review on the toxicity of ethylmercury, including its presence as a preservative in biological and pharmaceutical products. J. Appl. Toxicol. 21: 1–5.

    Article  CAS  Google Scholar 

  35. Shatalov, A. A. and H. Pereira (2007) Xylanase pre-treatment of giant reed organosolv pulps: Direct bleaching effect and bleach boosting. Indus.Crops Products 25: 248–256.

    Article  CAS  Google Scholar 

  36. Techapun, C., T. Charoenrat, N. Poosaran, M. Watanabe, and K. Sasak (2002) Thermostable and alkaline-tolerant cellulase-free xylanase produced by thermotolerant Streptomyces sp. Ab106. J. Biosci. Bioeng. 93: 431–433.

    CAS  Google Scholar 

  37. Khandeparkar, R. and N. B. Bhosle (2007) Purification and characterization of thermoalkalophilic xylanase isolated from the Enterobacter sp. MTCC 5112. Res. Microbiol. 157: 315–325.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Swarup Bisaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, R., Sahai, V., Mishra, S. et al. Development of mutants of Melanocarpus albomyces for hyperproduction of xylanase. Biotechnol Bioproc E 15, 800–809 (2010). https://doi.org/10.1007/s12257-010-0015-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-010-0015-1

Keywords

Navigation