Skip to main content
Log in

Optimization of the reconstruction of dermal papilla like tissues employing umbilical cord mesenchymal stem cells

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Alopecia is not life threatening, but patients who undergo alopecia often experience severe mental stress. In addition, the number of individuals afflicted by alopecia has been increasing steadily. The most effective treatment of alopecia developed to date is auto hair transplantation. To overcome the limitations associated with current therapies for the treatment of alopecia, many researchers have attempted to revive hair follicles by in vitro culture of hair follicle cells and subsequent implantation in the treatment area. Previously, we demonstrated that umbilical cord-derived mesenchymal stem cells (UC-MSCs) could be isolated and expanded successfully from the Wharton’s Jelly. Cultureexpanded UC-MSCs formed aggregates similar to native dermal papilla (DP) in special media (DPFM) and reconstructed dermal papilla like tissues (DPLTs) could induce new hair follicles. The purpose of the present study was to optimize the reconstruction of DPLTs. As in the case of MSCs, when compared to differentiated cells, DPLTs require an additional step to induce differentiation into dermal papilla cells. However, it is necessary to use hepatocyte growth factor (HGF) in the differentiation step, which is relatively expensive. To reduce the expenses associated with cell therapy using MSCs, it is necessary to optimize this differentiation step. To accomplish this, we evaluated the effects of cell inoculation density and growth factors during differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, L. and R. M. Hoffman (1995) The feasibility of targeted selective gene therapy of the hair follicle. Nat. Med. 1: 705–706.

    Article  Google Scholar 

  2. Yoo, B. Y., Y. H. Shin, H. H. Yoon, Y. J. Kim, K. Y. Song, S. J. Hwang, and J. K. Park (2007) Improved isolation of outer root sheath cells from human hair folli cles and their proliferation behavior under serum-free condition. Biotechnol. Bioproccess Eng. 12: 54–59.

    Article  CAS  Google Scholar 

  3. Commo, S., O. Gaillard, and B. A. Bernard (2000) The human hair follicle contains two distinct K19 positive compartments in the outer root sheath: a unifying hypothesis for stem cell reservoir? Differentiation 66: 157–164.

    Article  CAS  Google Scholar 

  4. Seo, Y.-K., D.-H. Lee, Y.-H. Shin, B.-Y. Yoo, K.-M. Lee, K.-Y. Song, S.-J. Seo, S.-J. Hwang, Y.-J. Kim, E. -K. Yang, C.-S. Park, I.-S. Chang, and J.-K. Park (2003) Development of isolation and cultivation method for outer root sheath cells from human hair follicle and construction of bioartificial skin. Biotechnol. Bioproccess Eng. 8: 151–157.

    Article  CAS  Google Scholar 

  5. McElwee, K. J., S. Kissling, E. Wenzel, A. Huth, and R. Hoffman (2003) Cultured peribulbar dermal sheath cells can induce hair follicle development and contribute to the dermal sheath and dermal papilla. J. Invest. Dermatol. 121: 1267–1275.

    Article  CAS  Google Scholar 

  6. Elliott, K., T. J. Stephenson, and A. G. Messenger (1999) Differences in hair follicle dermal papilla volume are due to extracellular matrix volume and cell number: implications for the control of hair follicle size and androgen responses. J. Invest. Dermatol. 113: 873–877.

    Article  CAS  Google Scholar 

  7. Katsuoka, K., C. Mauch, H. Schell, O. P. Hornstein, and Th. Krieg (1988) Collagen-type synthesis in human-hair papilla cells in culture. Arch. Dermatol. Res. 280: 140–144.

    Article  CAS  Google Scholar 

  8. Ozeki, M. and Y. Tabata (2003) In vivo promoted growth of mice hair follicles by the controlled release of growth factors. Biomaterials 24: 2387–2394.

    Article  CAS  Google Scholar 

  9. Lee, Y. R. (2001) Hepatocyte growth factor (HGF) activator expressed in hair follicles is involved in in vitro HGF-dependent hair follicle elongation. J. Dermatol. Sci. 25: 156–163.

    Article  CAS  Google Scholar 

  10. Shimaoka, S., R. Imai, and H. Ogawa (1994) Dermal papilla cells express hepatocyte growth factor. J. Dermatol. Sci. 7: S79–83.

    Article  CAS  Google Scholar 

  11. Jindo, T., R. Tsuboi, R. Imai, K. Takamori, J. S. Rubin, and H. Ogawa (1995) The effect of hepatocyte growth factor/scatter factor on human hair follicle growth. J. Dermatol. Sci. 10: 229–232.

    Article  CAS  Google Scholar 

  12. Yamazaki, M., R. Tsuboi, Y. R. Lee, K. Ishidoh, S. Mitsui, and H. Ogawa (1999) Hair cycle-dependent expression of hepatocyte growth factor (HGF) activator, other proteinases, and proteinase inhibitors correlates with the expression of HGF in rat hair follicles. J. Invest. Dermatol. Symp. Proc. 4: 312–315.

    Article  CAS  Google Scholar 

  13. Peus, D. and M. R. Pittelkow (1996) Growth factors in hair organ development and the hair growth cycle. Dermatol. Clin. 14: 559–572.

    Article  CAS  Google Scholar 

  14. Shimaoka, S., R. Tsuboi, T. Jindo, R. Imai, K. Takamori, J. S. Rubin, and H. Ogawa (1995) Hepatocyte growth factor/scatter factor expressed in follicular papilla cells stimulates human hair growth in vitro. J. Cell Physiol. 165: 333–338.

    Article  CAS  Google Scholar 

  15. Jindo, T., R. Tsuboi, R. Imai, K. Takamori, J. S. Rubin, and H. Ogawa (1994) Hepatocyte growth factor/scatter factor stimulates hair growth of mouse vibrissae in organ culture. J. Invest. Dermatol. 103: 306–309.

    Article  CAS  Google Scholar 

  16. Jindo, T., R. Tsuboi, K. Takamori, and H. Ogawa (1998) Local injection of hepatocyte growth factor/scatter factor (HGF/SF) alters cyclic growth of murine hair follicles. J. Invest. Dermatol. 110: 338–342.

    Article  CAS  Google Scholar 

  17. Katsuoka, K., H. Schell, B. Wessel, and O. P. Hornstein (1987) Effects of epidermal growth factor, fibroblast growth factor, minoxidil, and hydrocortisone on growth kinetics in human hair bulb papilla cells and root sheath fibroblasts cultured in vitro. Arch. Dermatol. Res. 279: 247–250.

    Article  CAS  Google Scholar 

  18. Lu, Z. F., S. Q. Cai, J. J. Wu, and M. Zheng (2006) Biological characterization of cultured dermal papilla cells and hair follicle regeneration in vitro and in vivo. Chin. Med. J. (Engl) 119: 275–281.

    CAS  Google Scholar 

  19. Chiu, H. C., C. H. Chang, J. S. Chen, and S. H. Jee (1996) Human hair follicle dermal papilla cell, dermal sheath cell, and interstitial dermal fibroblast characteristics. J. Formos. Med. Assoc. 95: 667–674.

    CAS  Google Scholar 

  20. Osada, A., T. Iwabuchi, J. Kishimoto, T. S. Hamazaki, and H. Okochi (2007) Long-term culture of mouse vibrissal dermal papilla cells and de novo hair follicle induction. Tissue Eng. 13: 975–982.

    Article  CAS  Google Scholar 

  21. Limat, A., T. Hunziker, E. R. Waelti, S. P. Inaebnit, U. Wiesmann, and L. R. Braathen (1993) Soluble factors from human hair papilla cells and dermal fibroblasts dramatically increase the clonal growth of outer root sheath cells. Arch. Dermatol. Res. 285: 205–210.

    Article  CAS  Google Scholar 

  22. Yano, K., L. F. Brown, and M. Detmar (2001) Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Invest. 107: 409–417.

    Article  CAS  Google Scholar 

  23. Yoo, H. G., I. Y. Chang, H. K. Pyo, Y. J. Kang, S. H. Lee, O. S. Kwon, K. H. Cho, H. Kwang, H. C. Eun, and K. H. Kim (2007) The additive effects of minoxidil and retinol on human hair growth in vitro. Biol. Pharm. Bull 30: 21–26.

    Article  CAS  Google Scholar 

  24. Rho, S. S., S. J. Park, S. L. Hwang, M. H. Lee, C. D. Kim, I. H. Lee, S. Y. Chang, and M. J. Rang (2005) The hair growth promoting effect of Asiasari radix extract and its molecular regulation. J. Dermatol. Sci. 38: 89–97.

    Article  Google Scholar 

  25. Charveron, M. and S. Lachgar (1998) Hair growth: VEGF (vascular endothelial growth factor) and fibroblasts of hair dermal papilla cells. Ann. Dermatol. Vener. 125: S9–S11.

    Google Scholar 

  26. Yoo, B. Y., Y. H. Shi, K. Y. Song, H. H. Yoon, and J. K. Park (2009) Evaluation of human umbilical cordderived mesenchymal stem cells on in vivo hair inducing activity. Tissue Eng. Regen. Med. 6: 15–22.

    Google Scholar 

  27. Method for the preparation of a dermal papilla tissue having hair follicle inductive potency. Pct kr 2005 004040: (2005)

  28. Stenn, K. S. and R. Paus (2001) Controls of hair follicle cycling. Physiol. Rev. 81: 449–494.

    CAS  Google Scholar 

  29. Argyris, T. (1976) Kinetics of epidermal production during epidermal regeneration following abrasion in mice. Am. J. Pathol. 83: 329–340.

    CAS  Google Scholar 

  30. Ansel, J. C., C. A. Armstrong, I. Song, K. L. Quinlan, J. E. Olerud, S. W. Caughman, and N. W. Bunnett (1997) Interactions of the skin and nervous system. J. Investig. Dermatol. Symp. Proc. 2: 23–26.

    CAS  Google Scholar 

  31. Arase, S., Y. Sadamoto, S. Katoh, Y. Urano, and K. Takeda (1990) Co-culture of human hair follicles and dermal papillae in a collagen matrix. J. Dermatol. 17: 667–676.

    CAS  Google Scholar 

  32. Green, M. R. and J. R. Couchman (1984) Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle. J. Invest. Dermatol. 83: 118–123.

    Article  CAS  Google Scholar 

  33. du Cros, D. L., K. Isaacs, and G. P. Moore (1992) Localization of epidermal growth factor immunoreactivity in sheep skin during wool follicle development. J. Invest. Dermatol. 98: 109–115.

    Article  Google Scholar 

  34. Nanney, L. B., C. M. Stoscheck, L. E. Jr. King, R. A. Underwood, and K. A. Holbrook (1990) Immunolocalization of epidermal growth factor receptors in normal developing human skin. J. Invest. Dermatol. 94: 742–748.

    Article  CAS  Google Scholar 

  35. Moore, G. P., B. A. Panaretto, and N. B. Carter (1985) Epidermal hyperplasia and wool follicle regression in sheep infused with epidermal growth factor. J. Invest. Dermatol. 84: 172–175.

    Article  CAS  Google Scholar 

  36. Donovan, M. J., R. Hahn, L. Tessarolloand, B. L. Hempstead (1996) Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development. Nat. Genet. 14: 210–213.

    Article  CAS  Google Scholar 

  37. Ojeda, S. R., C. Romero, V. Tapia, and G. A. Dissen (2000) Neurotrophic and cell-cell dependent control of early follicular development. Mol.Cell Endocrinol. 163: 67–71.

    Article  CAS  Google Scholar 

  38. Thornton, M. J., K. Hamada, A. G. Messenger, V. A. Randall (1998) Androgen-dependent beard dermal papilla cells secrete autocrine growth factor(s) in response to testosterone unlike scalp cells. J. Invest. Dermatol. 111: 727–732.

    Article  CAS  Google Scholar 

  39. Chuang, Y. H., D. Dean, J. Allen, R. Dawber, and F. Wojnarowskaf (2003) Comparison between the expression of basement membrane zone antigens of human interfollicular epidermis and anagen hair follicle using indirect immunofluorescence. Br. J. Dermatol. 149: 274–281.

    Article  CAS  Google Scholar 

  40. Jahoda, C. A. (1992) Induction of follicle formation and hair growth by vibrissa dermal papillae implanted into rat ear wounds: vibrissa-type fibres are specified. Development 115: 1103–1109.

    CAS  Google Scholar 

  41. Reynolds, A. J. and C. A. Jahoda (1992) Cultured dermal papilla cells induce follicle formation and hair growth by transdifferentiation of an adult epidermis. Development 115: 587–593.

    CAS  Google Scholar 

  42. Reynolds, A. J., C. Lawrence, P. B. Cserhalmi-Friedman, A. M. Christiano, and C. A. B. Jahoda (1999) Transgender induction of hair follicles. Nature 402: 33–34.

    Article  CAS  Google Scholar 

  43. Kishimoto, J., R. Ehama, L. Wu, S. Jiang, N. Jiang, and R. E. Burgeson (1999) Selective activation of the versican promoter by epithelial-mesenchymal interactions during hair follicle development. Proc. Natl. Acad. Sci. USA 96: 7336–7341.

    Article  CAS  Google Scholar 

  44. Hashimoto, T., T. Kazama, M. Ito, K. Urano, Y. Katakai, N. Yamaguchi, and Y. Ueymamy (2000) Histologic and cell kinetic studies of hair loss and subsequent recovery process of human scalp hair follicles grafted onto severe combined immunodeficient mice. J. Invest. Dermatol. 115: 200–206.

    Article  CAS  Google Scholar 

  45. Ehama, R., Y. Ishimatsu-Tsuji, S. Iriyama, R. Ideta, T. Soma, K. Yano, C. Kawasaki, S. Suzuki, Y. Shirakata, K. Hashimoto, and J. Kishimoto (2007) Hair follicle regeneration using grafted rodent and human cells. J. Invest. Dermatol. 127: 2106–2115

    Article  CAS  Google Scholar 

  46. Qiao, J., A. Turetsky, P. Kemp, and J. Teumer (2008) Hair morphogenesis in vitro: formation of hair structures suitable for implantation. Regen. Med. 3: 683–692.

    Article  Google Scholar 

  47. Lin, C. M., Y. C. Ji, H. Keng, X. N. Cai, and J. K. Zhang (2008) Microencapsulated human hair dermal papilla cells: a substitute for dermal papilla? Arch. Dermatol. Res. 300: 531–535.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Keug Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, BY., Shin, YH., Yoon, HH. et al. Optimization of the reconstruction of dermal papilla like tissues employing umbilical cord mesenchymal stem cells. Biotechnol Bioproc E 15, 182–190 (2010). https://doi.org/10.1007/s12257-009-3050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-3050-z

Keywords

Navigation