Skip to main content
Log in

Effect of growth temperature, induction, and molecular chaperones on the solubilization of over-expressed cellobiose phosphorylase from Cellvibrio Gilvus under in vivo conditions

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In vivo folding of many proteins can be facilitated by growth temperature, extent of induction, and molecular chaperones, which prevent over-expressed protein from being trapped into insoluble inclusion bodies. In the present report, we describe the role of molecular chaperones and growth temperature on the solubilization of overexpressed Cellobiose Phosphorylase (CBP) in Escherichia coli. The growth of host at low temperature enhanced enzyme in soluble fraction. Similarly, induction of target gene at low level of IPTG also yielded higher enzyme in soluble fraction. The synergistic effect of low temperature and induction on the prevention of inclusion bodies was also evident from our results. In addition, co-expression of the target gene with two types of molecular chaperones (GroESL and KODHsp) was also attempted. However, none of these chaperones enhanced the solubilization under in vivo conditions. Nevertheless, effective role of low growth temperature coupled with low level of induction appeared to be an attractive feature for producing recombinant protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanaka, K., K. Kawaguchi, T. Imada, T. Ooi, and M. Arai (1995) Purification and properties of cellobiose phosphorylase from Clostridium thermocellum. J. Ferment. Bioeng. 79: 212–216.

    Article  CAS  Google Scholar 

  2. Liu, A., H. Tomita, H. Li, H. Miyaki, C. Aoyagi, S. Kaneko, and K. Hayashi (1998) Cloning, sequencing, and expression of the cellobiose phosphorylase gene of Cellvibrio gilvus. J. Ferment. Bioeng. 85: 511–513.

    Article  CAS  Google Scholar 

  3. Ohdan, K., K. Fujii, M. Yanase, V. Takaha, and T. Kuriki (2007) Phosphorylase coupling as a tool to convert cellobiose into amylose. J. Biotechnol. 127: 496–502.

    Article  CAS  Google Scholar 

  4. Charoensakdi, R., S. Murakami, K. Aoki, V. Rimphanitchayakit, and T. Limpaseni (2006) Cloning and expression of cyclodextrin glycosyltransferase Gene from Paenibacillus sp. T16 isolated from hot spring soil in northern Thailand. J. Biochem. Mol. Bio. 40: 333–340.

    Google Scholar 

  5. Nidetzky, B., R. Griessler, A. Schwarz, and B. Splechtna (2004) Cellobiose phosphorylase from lulomonas uda gene cloning and expression in Escherichia coli, and application of the recombinant enzyme in a ‘glycosynthase-type’ reaction. J. Mol. Cata. B: Enzymatic 29: 241–248.

    Article  CAS  Google Scholar 

  6. Ito, S., S. Hamada, K. Yamaguchi, S. Umene, H. Ito, H. Matsui, T. Ozawa, H. Taguchi, J. Watanabe, J. Wasaki, and S. Ito (2007) Cloning and sequencing of the cellobiose 2-epimerase gene from an obligatory anaerobe, Ruminococcus albus. Biochem. Biophys. Res. Commun. 360: 640–645.

    Article  CAS  Google Scholar 

  7. Machida, S., Y. Yu, S. P. Singh, J. D. Kim, K. Hayashi, and Y. Kawata (1998) Overproduction of β-glucosidase in active form by an Escherichia coli system coexpressing the chaperonin GroEL/ES. FEMS Microbiol. Lett. 159: 41–46.

    CAS  Google Scholar 

  8. Singh, S. P., J. D. Kim, S. Machida, and K. Hayashi (2002) Overexpression and protein folding of a chimeric β-glucosidase constructed from obacterium tumefaciensand Cellvibrio gilvus. Ind. J. Biochem. Biophys. 39: 235–239.

    CAS  Google Scholar 

  9. Kim, D., S. Singh, S. Machida, Y. Chika, Y. Kawata, and K. Hayashi (1998) Importance of five amino acid residues at Cterminal region for the folding and stability of β-Glucosidase of Cellvibrio gilvus. J. Ferment. Bioeng. 85: 433–435.

    Article  CAS  Google Scholar 

  10. Machida, S., S. Ogawa, S. Xiaohua, T. Takaha, K. Fujii, and K. Hayashi (2000) Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett. 486: 131–135.

    Article  CAS  Google Scholar 

  11. Dodia, M. S., C. M. Rawal, H. G. Bhimani, R. H. Joshi, S. K. Khare, and S. P. Singh (2008) Purification and stability characteristics of an alkaline serine protease from a newly isolated haloalkaliphilic bacterium sp. AH-6. J. Ind. Microbiol. Biotechnol. 35: 121–131.

    Article  CAS  Google Scholar 

  12. Dodia, M. S., H. G. Bhimani, C. M. Rawal, R. H. Joshi, and S. P. Singh (2008) Salt dependent resistance against chemical denaturation of alkaline protease from a newly isolated Haloalkaliphilic Bacillus sp. Bioresour. Technol. 99: 6223–6227.

    Article  CAS  Google Scholar 

  13. Benech, R. O., X. Li, D. Patton, J. Powlowski, R. Storms, R. Bourbonnais, M. Paice, and A. Tsang (2007) Recombinant expression, characterization, and pulp prebleaching property of a Phanerochaete chrysosporium endo-β-1,4-mannanase. Enzy. Microb. Technol. 41: 740–747.

    Article  CAS  Google Scholar 

  14. Maeda, Y., H. Koga, H. Yamada, T. Ueda, and T. Imoto (1995) Effective renaturation of reduced lysozyme by gentle removal of urea. Protein Eng. 8: 201–205.

    Article  CAS  Google Scholar 

  15. Maeda, Y., H. Koga, H. Yamada, T. Ueda, and T. Imoto (1996) Effect of additives on the renaturation of reduced lysozyme in the presence of 4 M urea. Protein Eng. 9: 461–465.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.P., Purohit, M.K., Aoyagi, C. et al. Effect of growth temperature, induction, and molecular chaperones on the solubilization of over-expressed cellobiose phosphorylase from Cellvibrio Gilvus under in vivo conditions. Biotechnol Bioproc E 15, 273–276 (2010). https://doi.org/10.1007/s12257-009-0023-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-009-0023-1

Keywords

Navigation