Skip to main content
Log in

Comparative study of digestive enzymes of squid (Todarodes pacificus) viscera after supercritical carbon dioxide and organic solvent extraction

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Three major classes of digestive enzymes of squid viscera were characterized following extraction of oil by supercritical carbon dioxide (SCO2) and organic solvent, n-hexane. Squid viscera were extracted at temperature, 35∼45°C and pressure, 15∼25 MPa for 2.5 h by SCO2 with a constant flow rate of 22 g/min. Oil extraction yield increased with the increasing of extraction pressure and temperature. The highest oil extracted residues of squid viscera were used for characterization of digestive enzymes. The activities of protease, lipase, and amylase were highest in n-hexane treated squid viscera samples and lowest in SCO2 treated samples. The crude extracts of SCO2 and n-hexane treated squid viscera samples showed almost same optimum pH and pH stability for each of the digestive enzymes. The optimum temperature of protease, lipase, and amylase were found to almost similar in SCO2 and n-hexane treated samples. But the thermal stability for each digestive enzyme in SCO2 treated squid viscera were slightly higher than that of n-hexane treated squid viscera. Studies using SDS-PAGE showed no significant differences in protein patterns of the crude extracts of untreated and SCO2 and n-hexane treated squid viscera indicating no denaturation of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simpson, B. K., J. P. Smith, and N. F. Haard (1991) Marine enzymes. pp. 1645–1653. In: Y. H. Hui (ed.). Encyclopedia of Food Science and Technology. John Wiley and Sons, NY, USA.

    Google Scholar 

  2. Vilhelmsson, O. (1997) The state of enzyme biotechnology in the fish processing industry. Trends Food Sci. Tech. 8: 266–270.

    Article  CAS  Google Scholar 

  3. Anwar, A. and M. Saleemuddin (1998) Alkaline proteases. Bioresour.Technol. 6: 175–183.

    Article  Google Scholar 

  4. Vulfson, E. N. (1994) Industrial applications of lipases. pp. 271–288. In: P. Wooley and S. B. Petersen (eds.). Lipases. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  5. Giri, S. S., S. K. Sahoo, A. K. Sahu, and P. K. Mukhopadhyay (2000) Nutrient digestibility and intestinal enzyme activity of Clarias batrachus (Linn.) juveniles fed on dried fish and chicken viscera incorporated diets. Bioresour. Technol. 71: 97–101.

    Article  CAS  Google Scholar 

  6. Simpson, B. K. and N. F. Haard (1999) Marine enzymes. pp. 1525–1534, In: F. J. Francis (ed.). Encyclopedia of Food Science and Technology. John Wiley and Sons, NY, USA.

    Google Scholar 

  7. Pariser, E. R., M. B. Wallerstein, C. J. Corkery, and N. L. Brown (1978) Fish Protein Concentrate: Panacea for World Malnutrition. MIT Press, MA, USA.

    Google Scholar 

  8. Park, J. Y., M. K. Lee, M. S. Uddin, and B. S. Chun (2008) Removal of off flavors and isolation of fatty acids from boiled anchovies using supercritical carbon dioxide. Biotechnol. Bioprocess Eng. 13: 298–303.

    Article  CAS  Google Scholar 

  9. Temelli, F., E. Leblanc, and L. Fu (1995) Supercritical carbon dioxide extraction of oil from Atlantic Mackerel (Scomber scombrus) and protein functionality. J. Food Sci. 60: 703–706.

    Article  CAS  Google Scholar 

  10. Yamaguchi, K., M. Murakami, H. Nakano, S. Konosu, T. Kokura, H. Yamamoto, M. Kosaka, and K. Hata (1986) Supercritical carbon dioxide extraction of oils from Antarctic krill. J. Agric. Food Chem. 34: 904–907.

    Article  CAS  Google Scholar 

  11. Oda, K. and S. Murao (1974) Purification and properties of carboxyl proteinase in basidiomycetes. Agric. Biol. Chem. 38: 2435–2437.

    CAS  Google Scholar 

  12. Vorderwülbecke, T., K. Kieslich, and H. Erdmann (1992) Comparison of lipase by different assays. Enzyme Microb. Technol. 14: 631–639.

    Article  Google Scholar 

  13. Hatzinikolaou, D. G., E. Kourentzi, A. Stamatis, P. Christakopoulos, F. N. Kolisis, D. Kekos, and B. J. Macris (1999) A novel lipolytic activity of rhodotorula glutinis cells: production, partial characterization, and application in the synthesis of esters. J. Biosci. Bioeng. 88: 53–56.

    Article  CAS  Google Scholar 

  14. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugar. Anal. Chem. 31: 426–429.

    Article  CAS  Google Scholar 

  15. Laemmli, U. K. (1970) Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  16. Morita, A. and O. Kajimoto (1990) Solute-solvent interaction in nonpolar supercritical fluid: a clustering model and size distribution. J. Phys. Chem. 94: 6420–6425.

    Article  CAS  Google Scholar 

  17. Bai, S., M. V. Craig, L. F. Liu, C. L. Mayne, R. J. Pugmire, and D. M. Grant (1997) CO2 clustering of 1-decanol and methanol in supercritical fluids by 13C nuclear spin-lattice relaxation. J. Phys. Chem. 101: 2923–2928.

    CAS  Google Scholar 

  18. Bulgarevicg, D. S., T. Sako, T. Sujeta, K. Otake, Y. Takebayashi, C. Kamizawa, Y. Horikawa, and M. Kato (2002) The role or general hydrogen-bonding interaction in the alvation process of organic compounds by supercritical CO2/n-alcohol mixtures. Ind. Eng. Chem. Res. 41: 2074–2081.

    Article  Google Scholar 

  19. De Azevedo, A. B. A., T. G. Kieckbush, A. K. Tashima, R. S. Mohamed, P. Mazzafera, and S. A. B. Vieira de Meloc (2008) Extraction of green coffee oil using supercritical carbon dioxide. J. Supercritic. Fluids 44: 186–192.

    Article  Google Scholar 

  20. Kamat, S. V., E. J. Beckman, and A. J. Russel (1995) Enzyme activity in supercritical fluids. Crit. Rev. Biotechnol. 15: 41–71.

    Article  CAS  Google Scholar 

  21. Habulin, M. and Z. Knez (2001) Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. J. Chem. Technol. Biotechnol. 76: 1260–1266.

    Article  CAS  Google Scholar 

  22. Eshel, A., P. Lindner, P. Smirnoff, S. Newton, and S. Harpaz (1993) Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater. Comp. Biochem. Physiol. A 106: 627–634.

    Article  Google Scholar 

  23. Hidalgo, M. C., E. Urea, and A. Sanz (1999) Comparative study of digestive enzymes in fish with different nutritional habits: Proteolytic and amylase activities. Aquaculture 170: 267–283.

    Article  CAS  Google Scholar 

  24. Prasertsan, P., S. Jitbunjerdkul, Trairatananukoon, and T. Prachumratana (2001) Production of enzyme and protein hydrolysate from fish processing waste. pp. 63–72. In: S. Roussos, C. R. Soccol, A. Pandey, and C. Augur (eds.). New horizons in Biotechnology. Kluwer Academic Publisher, India.

    Google Scholar 

  25. Natalia, Y., R. Hashim, A. Ali, and A. Chong (2004) Characterization of digestive enzymes in a carnivorous ornamental fish, the Asian bony tongue Scleropages formosus (Osteoglossidae). Aquaculture 233: 305–320.

    Article  CAS  Google Scholar 

  26. Gjellesvik, D. R., D. Lombardo, and B. T. Walther (1992) Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim. Biophys. Acta. 1124: 123–134.

    CAS  Google Scholar 

  27. Raso, B. A. and H. O. Hultin (1988) A comparison of dogfish and porcine pancreatic lipases. Comp. Biochem. Physiol. B 89: 671–677.

    Article  Google Scholar 

  28. Mukundan, M. K., K. Gopakumar, and M. R. Nair (1985) Purification of a lipase from the hepatopancreas of oil sardine (Sardinella longiceps Linnaceus) and its characteristics and properties. J. Sci. Food Agric. 36: 191–203.

    Article  CAS  Google Scholar 

  29. Kumar, S., K. Kikon, A. Upadhyay, S. S. Kanwar, and R. Gupta (2005) Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr. Purif. 41: 38–44.

    Article  CAS  Google Scholar 

  30. Munilla-Mordn, R. and F. Saborido-Rey (1996) Digestive enzymes in marine species II: Amylase activities in gut from seabream (Sparus aurata), turbot (Scophthalmus maximus), and redfish (Sebastes mentella). Comp. Biochem. Physiol. B 113: 827–834.

    Article  Google Scholar 

  31. Noman, A. S. M., M. A. Hoque, P. K. Sen, and M. R. Karim (2006) Purification and some properties of aamylase from post-harvest Pachyrhizus erosus L. tuber. Food Chem. 99: 444–449.

    Article  CAS  Google Scholar 

  32. Yamamoto, A. (1975) Proteolytic enzymes. pp. 123. In: G. Reed (ed.). Enzymes in food processing. Academic Press, NY, USA.

    Google Scholar 

  33. Aryee, A. N. A., B. K. Simpson, and R. Villalonga (2007) Lipase fraction from the viscera of grey mullet (Mugil cephalus): Isolation, partial purification, and some biochemical characteristics. Enzyme Microb. Technol. 40: 394–402.

    Article  CAS  Google Scholar 

  34. Espósito, T. S., I. P. G. Amaral, D. S. Buarque, G. B. Oliveira, L. B. Carvalho Jr, and R. S. Bezerra (2009) Fish processing waste as a source of alkaline proteases for laundry detergent. Food Chem. 112: 125–130.

    Article  Google Scholar 

  35. Stahl, E., K. W. Quirin, and R. J. Blagrove (1984) Extraction of seed oils with supercritical carbon dioxide: effect on residual proteins. J. Agric. Food Chem. 32: 938–940.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Soo Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uddin, M.S., Ahn, HM., Kishimura, H. et al. Comparative study of digestive enzymes of squid (Todarodes pacificus) viscera after supercritical carbon dioxide and organic solvent extraction. Biotechnol Bioproc E 14, 338–344 (2009). https://doi.org/10.1007/s12257-008-0271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0271-5

Keywords

Navigation