Skip to main content
Log in

Effect of cutinase on the degradation of cotton seed coat in bio-scouring

  • Articles
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this paper the effect of cutinase on the degradation of cotton seed coat is analyzed. Fourier transform infrared (FT-IR) microspectroscopy was applied to study the changes of chemical compositions in cotton seed coat epidermal layer and gas chromatography/mass spectrometry (GC/MS) was used to analyse cutinase depolymerization of cotton seed coat. Based on these arguments the ability of cutinase to degrade aliphatic components in cotton seed coat was verified. Positive effect of cutinase on degradation of cotton seed coat was observed with the combination of alkaline pectinase or xylanase. The removal of aliphatic components by cutinase enables other enzymes to penetrate into the inner of cotton seed coat. Cutinase can potentially improve the degradation of cotton seed coat during cotton fabric bio-scouring process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Csiszár, E., G. Szakács, and I. Rusznák (1998) Combining traditional cotton scouring with cellulase enzymatic treatment. Text. Res. J. 68:163–167.

    Article  Google Scholar 

  2. Csiszár, E., A. Losonczi, and G. Szakács (2001) Enzymes and chelating agent in cotton pretreatment. J. Biotechnol. 89: 271–279.

    Article  Google Scholar 

  3. Csiszár, E., K. Urbánszki, and G. Szakács (2001) Biotreatment of desized cotton fabric by commercial cellulase and xylanase enzymes. J. Mol. Catal. B: Enzym 11: 1065–1072.

    Article  Google Scholar 

  4. Csiszár, E., A. Losonczi, B. Koczka, G. Szakacs, and A. Pomlenyi (2006) Degradation of lignin-containing materials by xylanase in biopreparation of cotton. Biotechnol. Lett. 28: 749–753.

    Article  Google Scholar 

  5. Csiszár, E., G. Szakács, and B. Koczka (2007) Biopreparation of cotton fabric with enzymes produced by solid-state fermentation. Enzyme Microb. Technol. 40:1765–1771.

    Article  Google Scholar 

  6. Fryxell, P. A. (1963) Morphology of the base of seed hairs of Gossypium I: gross morphology. Bot. Gaz. 124: 196–199.

    Article  Google Scholar 

  7. Kolattukudy, P. E. (1980) Biopolyester membranes of plants: Cutin and suberin. Science 208: 990–1000.

    Article  CAS  Google Scholar 

  8. Himmelsbach, D. S., D. E. Akin, J. Kim, and Ian Hardin (2003) Chemical structural investigation of the cotton fiber base and associated seed coat: Fourier-transform infrared mapping and histochemistry. Text. Res. J. 73: 281–288.

    Article  CAS  Google Scholar 

  9. Gevens, A. and R. L. Nicholson (2000) Cutin composition: a subtle role for fungal cutinase? Physiol. Mol. Plant Pathol. 57: 43–45.

    Article  Google Scholar 

  10. Degani, O., S. Gepstein, and C. G. Dosoretz (2002) Potential use of cutinase in enzymatic scouring of cotton fiber cuticle. Appl. Biochem. Biotechnol. 102–103: 277–289.

    Article  Google Scholar 

  11. Agrawal, P. B., V. A. Nierstrasz, B. G. Klug-Santner, G. M. Gübitz, H. B. M. Lenting, and M. M. C. G. Warmoeskerken (2007) Wax removal for accelerated cotton scouring with alkaline pectinase. Biotechnol. J. 2: 306–315.

    Article  CAS  Google Scholar 

  12. Agrawal, P. B., V. A. Nierstrasz, and M. M. C. G. Warmoeskerken (2008) Role of mechanical action in lowtemperature cotton scouring with F. solani pisi cutinase and pectate lyase. Enzyme Microb. Technol. 42:473–482.

    Article  CAS  Google Scholar 

  13. Silva, C. M., F. Carneiro, A. O’Neill, L. P. Fonseca, J. S. M. Cabral, G. Guebitz, and A. Cavaco-Paulo (2005) Cutinase-a new tool for biomodification of synthetic fibres. J. Polym. Sci. A: Polym. Chem. 43: 2448–2450.

    Article  CAS  Google Scholar 

  14. Araújo, R., C. Silva, A. O’Neill, N. Micaelo, G. Guebitz, C. M. Soares, M. Casal, and A. Cavaco-Paulo (2007) Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers. J. Biotechnol. 128: 849–857.

    Article  Google Scholar 

  15. Ryser, U. and P. J. Holloway (1985) Ultrastructure and chemistry of soluble and polymeric lipids in cell walls from seed coats and fibers of Gossypium species. Planta 163: 151–163.

    Article  CAS  Google Scholar 

  16. Du, G. C., S. L. Zhang, Z. Z. Hua, Y. Zhu, and J. Chen (2007) Enhanced cutinase production with the thermobifida fusca by two-stage pH control strategy. Biotechnol. J. 2: 365–369.

    Article  CAS  Google Scholar 

  17. Zhuge, B., G. C. Du, W. Shen, J. Zhuge, and J. Chen (2007) Efficient secretory expression of an alkaline pectate lyase gene from Bacillus subtilis in E. coli and the purification and characterization of the protein. Biotechnol. Lett. 29: 405–410.

    Article  CAS  Google Scholar 

  18. Bailey, M. J. and K. M. H. Nevalainen (1981) Induction, isolation, and testing of stable Trichoderrna reesei mutants with improved pro-duction of solubilizing cellulase. Enzyme Microb. Technol. 3: 153–157.

    Article  CAS  Google Scholar 

  19. Bailey, M. J., P. Biely, and K. Poutanen (1992) Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257–270.

    Article  CAS  Google Scholar 

  20. Brühlmann, F., K. S. Kim, W. Zimmerman, and A. Fiechter (1994) Pectinolytic enzymes from actinomycetes for the degumming of ramie bast fibers. Appl. Environ. Microbiol. 60: 2107–2112.

    Google Scholar 

  21. Calado, C. R. C., S. M. S Monteiro, J. M. S. Cabral, and L. P. Fonsecal (2002) Effect of pre-fermentation on the production of cutinase by a recombinant Saccharomyces cerevisiae. J. Biosci. Bioeng. 93: 354–359.

    CAS  Google Scholar 

  22. Walton, T. J. and P. E. Kolattukudy (1972) Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochem. 11: 1885–1896.

    Article  CAS  Google Scholar 

  23. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  24. Villena, J. F., E. DomÍnguez, and A. Heredia (2000) Monitoring biopolymers present in plant cuticles by FTIR spectroscopy. J. Plant Physiol. 156: 419–422.

    CAS  Google Scholar 

  25. Yatsu, L. Y., K. E. Espelie, and P. E. Kolattukudy (1983) Ultrastructural and chemical evidence that cell wall of green cotton fibers is suberized. Plant Physiol. 73: 521–524.

    Article  CAS  Google Scholar 

  26. Kačuráková, M., P. Capek, V. Sasinkováet, V. Wellner, and A. Ebringerová (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 43: 195–203.

    Article  Google Scholar 

  27. Wang, Q., X. Fan, W. Gao, and J. Chen (2006) Characterization of bioscoured cotton fabrics using FT-IR ATR spectroscopy and microscopy techniques. Carbohydr. Res. 341: 2170–2175.

    Article  CAS  Google Scholar 

  28. Chung, C., M. Lee, and E. K. Choe (2004) Characterization of cotton fabric scouring by FT-IR ATR spectroscopy. Carbohydr. Polym. 58: 417–420.

    Article  CAS  Google Scholar 

  29. Sene, C. F. B., M. C. McCann, R. H. Wilson, and R. Grinter (1994) Fourier-transform raman and fouriertransform infrared spectroscopy (an investigation of five higher plant cell walls and their components). Plant Physiol. 106: 1623–1631.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guocheng Du or Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, H., Hua, Z., Qian, G. et al. Effect of cutinase on the degradation of cotton seed coat in bio-scouring. Biotechnol Bioproc E 14, 354–360 (2009). https://doi.org/10.1007/s12257-008-0200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-008-0200-7

Keywords

Navigation