Skip to main content
Log in

Is Integrin Subunit Alpha 2 Expression a Prognostic Factor for Liver Carcinoma? A Validation Experiment Based on Bioinformatics Analysis

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

ITGA2 (Integrin alpha-2) has been detected to be over-expressed in a number of cancers and has been suggested to be involved in cell adhesion and cell-surface mediated signaling. Our previous study using bioinformatic analyses has shown that ITGA2 might be a key gene being involved in the Cadmium-induced malignant transformation of liver cells. In the present study, we firstly aimed to learn the possible functions of ITGA2 via bioinformatics analysis, and then test its expression and clinical significance in liver carcinoma specimens through laboratory experiments. Gene ontology (GO) and pathway enrichment analysis, as well as protein-protein interaction (PPI) analysis has been conducted in Genecards. Then, a tissue microarray containing 90 cases of liver cancer and 90 paired adjacent non-cancerous samples was used for detection of ITGA2 expression by immunohistochemistry assay. Consequently, ITGA2 may be enriched in pathways regarding cell adhesion and migration. PPI analysis suggests that ITGA1, ITGB2, FLT4, LAMB1 and AGRN may have a close relationship with ITGA2. No association between ITGA2 expression and clinical parameters was observed. However, the data showed that ITGA2 might be an independent prognostic factor for liver cancer patients. In conclusion, the data suggest that ITGA2 over-expression might be a potential unfavorable prognostic factor and a potential therapeutic target for liver carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Satarug S, Vesey DA, Gobe GC (2017) Current health risk assessment practice for dietary cadmium: data from different countries. Food Chem Toxicol 106(Pt A):430–445. https://doi.org/10.1016/j.fct.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  2. Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23(5):897–926. https://doi.org/10.1007/s10534-010-9351-z

    Article  CAS  PubMed  Google Scholar 

  3. Cartularo L, Kluz T, Cohen L, Shen SS, Costa M (2016) Molecular mechanisms of malignant transformation by low dose cadmium in Normal human bronchial epithelial cells. PLoS One 11(5):e0155002. https://doi.org/10.1371/journal.pone.0155002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Garcia-Esquinas E, Pollan M, Tellez-Plaza M, Francesconi KA, Goessler W, Guallar E, Umans JG, Yeh J, Best LG, Navas-Acien A (2014) Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect 122(4):363–370. https://doi.org/10.1289/ehp.1306587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ledda C, Loreto C, Zammit C, Marconi A, Fago L, Matera S, Costanzo V, Fuccio Sanza G, Palmucci S, Ferrante M, Costa C, Fenga C, Biondi A, Pomara C, Rapisarda V (2017) Noninfective occupational risk factors for hepatocellular carcinoma: a review (review). Mol Med Rep 15(2):511–533. https://doi.org/10.3892/mmr.2016.6046

    Article  CAS  PubMed  Google Scholar 

  6. Ma X, Yang Y, Li HL, Zheng W, Gao J, Zhang W, Yang G, Shu XO, Xiang YB (2017) Dietary trace element intake and liver cancer risk: results from two population-based cohorts in China. Int J Cancer 140(5):1050–1059. https://doi.org/10.1002/ijc.30522

    Article  CAS  PubMed  Google Scholar 

  7. Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, Kaplan S, Dahary D, Warshawsky D, Guan-Golan Y, Kohn A, Rappaport N, Safran M, Lancet D (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54(1):30 31–31 30 33. https://doi.org/10.1002/cpbi.5

    Article  Google Scholar 

  8. Mo Z, Zheng S, Lv Z, Zhuang Y, Lan X, Wang F, Lu X, Zhao Y, Zhou S (2016) Senescence marker protein 30 (SMP30) serves as a potential prognostic indicator in hepatocellular carcinoma. Sci Rep 6:39376. https://doi.org/10.1038/srep39376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Q, Bavi P, Wang JY, Roehrl MH (2017) Immuno-proteomic discovery of tumor tissue autoantigens identifies olfactomedin 4, CD11b, and integrin alpha-2 as markers of colorectal cancer with liver metastases. J Proteome 168:53–65. https://doi.org/10.1016/j.jprot.2017.06.021

    Article  CAS  Google Scholar 

  10. Dong J, Wang R, Ren G, Li X, Wang J, Sun Y, Liang J, Nie Y, Wu K, Feng B, Shang Y, Fan D (2017) HMGA2-FOXL2 Axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clin Cancer Res 23(13):3461–3473. https://doi.org/10.1158/1078-0432.CCR-16-2180

    Article  CAS  PubMed  Google Scholar 

  11. Ding W, Fan XL, Xu X, Huang JZ, Xu SH, Geng Q, Li R, Chen D, Yan GR (2015) Epigenetic silencing of ITGA2 by MiR-373 promotes cell migration in breast cancer. PLoS One 10(8):e0135128. https://doi.org/10.1371/journal.pone.0135128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong KF, Liu AM, Hong W, Xu Z, Luk JM (2016) Integrin alpha2beta1 inhibits MST1 kinase phosphorylation and activates Yes-associated protein oncogenic signaling in hepatocellular carcinoma. Oncotarget 7(47):77683–77695. https://doi.org/10.18632/oncotarget.12760

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhao X, Wu Y, Lv Z (2015) miR-128 modulates hepatocellular carcinoma by inhibition of ITGA2 and ITGA5 expression. Am J Transl Res 7(9):1564–1573

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chin SP, Marthick JR, West AC, Short AK, Chuckowree J, Polanowski AM, Thomson RJ, Holloway AF, Dickinson JL (2015) Regulation of the ITGA2 gene by epigenetic mechanisms in prostate cancer. Prostate 75(7):723–734. https://doi.org/10.1002/pros.22954

    Article  CAS  PubMed  Google Scholar 

  15. Gharibi A, La Kim S, Molnar J, Brambilla D, Adamian Y, Hoover M, Hong J, Lin J, Wolfenden L, Kelber JA (2017) ITGA1 is a pre-malignant biomarker that promotes therapy resistance and metastatic potential in pancreatic cancer. Sci Rep 7(1):10060. https://doi.org/10.1038/s41598-017-09946-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laskowska J, Lewandowska-Bieniek J, Szczepanek J, Styczynski J, Tretyn A (2016) Genomic and transcriptomic profiles and in vitro resistance to mitoxantrone and idarubicin in pediatric acute leukemias. J Gene Med 18(8):165–179. https://doi.org/10.1002/jgm.2889

    Article  CAS  PubMed  Google Scholar 

  17. Lee JY, Hong SH, Shin M, Heo HR, Jang IH (2016) Blockade of FLT4 suppresses metastasis of melanoma cells by impaired lymphatic vessels. Biochem Biophys Res Commun 478(2):733–738. https://doi.org/10.1016/j.bbrc.2016.08.017

    Article  CAS  PubMed  Google Scholar 

  18. Virga J, Bognar L, Hortobagyi T, Zahuczky G, Csosz E, Kallo G, Toth J, Hutoczki G, Remenyi-Puskar J, Steiner L, Klekner A (2017) Prognostic role of the expression of invasion-related molecules in Glioblastoma. J Neurol Surg A Cent Eur Neurosurg 78(1):12–19. https://doi.org/10.1055/s-0036-1584920

    Article  PubMed  Google Scholar 

  19. Lin Q, Lim HS, Lin HL, Tan HT, Lim TK, Cheong WK, Cheah PY, Tang CL, Chow PK, Chung MC (2015) Analysis of colorectal cancer glyco-secretome identifies laminin beta-1 (LAMB1) as a potential serological biomarker for colorectal cancer. Proteomics 15(22):3905–3920. https://doi.org/10.1002/pmic.201500236

    Article  CAS  PubMed  Google Scholar 

  20. Chakraborty S, Lakshmanan M, Swa HL, Chen J, Zhang X, Ong YS, Loo LS, Akincilar SC, Gunaratne J, Tergaonkar V, Hui KM, Hong W (2015) An oncogenic role of Agrin in regulating focal adhesion integrity in hepatocellular carcinoma. Nat Commun 6:6184. https://doi.org/10.1038/ncomms7184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chakraborty S, Njah K, Pobbati AV, Lim YB, Raju A, Lakshmanan M, Tergaonkar V, Lim CT, Hong W (2017) Agrin as a Mechanotransduction signal regulating YAP through the hippo pathway. Cell Rep 18(10):2464–2479. https://doi.org/10.1016/j.celrep.2017.02.041

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LZ and YZ designed the study and reviewed the manuscript. YH, JL and WZ performed the bioinformatics analysis and immunohistochemical staining. LZ, ZY and YL analysed the data. LZ, WL, and YZ wrote the manuscript.

Corresponding author

Correspondence to Yi Zhu.

Ethics declarations

The experiments reported here were carried out according to the Declaration of Helsinki principles and the institute’s ethical regulations.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, Y., Ling, J. et al. Is Integrin Subunit Alpha 2 Expression a Prognostic Factor for Liver Carcinoma? A Validation Experiment Based on Bioinformatics Analysis. Pathol. Oncol. Res. 25, 1545–1552 (2019). https://doi.org/10.1007/s12253-018-0551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0551-0

Keywords

Navigation