Skip to main content

Advertisement

Log in

Bisulfite-Based DNA Methylation Analysis from Recent and Archived Formalin-Fixed, Paraffin Embedded Colorectal Tissue Samples

  • Research
  • Published:
Pathology & Oncology Research

Abstract

We aimed to test the applicability of formalin-fixed and paraffin-embedded (FFPE) tissue samples for gene specific DNA methylation analysis after using two commercially available DNA isolation kits. Genomic DNA was isolated from 5 colorectal adenocarcinomas and 5 normal adjacent tissues from “recent”, collected within 6 months, and “archived”, collected more than 5 years ago, FFPE tissues using either High Pure FFPET DNA Isolation kit or QIAamp DNA FFPE Tissue kit. DNA methylation analysis of MAL, SFRP1 and SFRP2 genes, known to be hypermethylated in CRC, was performed using methylation-sensitive high resolution melting (MS-HRM) analysis and sequencing. QIAamp (Q) method resulted in slightly higher recovery in archived (HP: 1.22 ± 3.18μg DNA; Q: 3.00 ± 4.04μg DNA) and significantly (p < 0.05) higher recovery in recent samples compared to High Pure method (HP) (HP: 4.10 ± 2.91μg DNA; Q: 11.51 ± 7.50μg DNA). Both OD260/280 and OD260/230 ratios were lower, but still high in the High Pure isolated archived and recent samples compared to those isolated with QIAamp. Identical DNA methylation patterns were detected for all 3 genes tested by MS-HRM with both isolation kits in the recent group. However, despite of higher DNA recovery in QIAamp slightly more reproducible methylation results were obtained from High Pure isolated archived samples. Sequencing confirmed DNA hypermethylation in CRCs. In conclusion, reproducible DNA methylation patterns were obtained from recent samples using both isolation kits. However, long term storage may affect the reliability of the results leading to moderate differences between the efficiency of isolation kits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

References

  1. Krijgsman O, Israeli D, Haan JC et al (2012) CGH arrays compared for DNA isolated from formalin-fixed, paraffin-embedded material. Genes Chromosom Cancer 51(4):344–352. doi:10.1002/gcc.21920

    Article  CAS  PubMed  Google Scholar 

  2. Lyons-Weiler M, Hagenkord J, Sciulli C et al (2008) Optimization of the affymetrix GeneChip mapping 10K 2.0 assay for routine clinical use on formalin-fixed paraffin-embedded tissues. Diagn Mol Pathol Am J Sur Pathol Part B 17(1):3–13. doi:10.1097/PDM.0b013e31815aca30

    CAS  Google Scholar 

  3. Schweiger MR, Kerick M, Timmermann B et al (2009) Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One 4(5):e5548. doi:10.1371/journal.pone.0005548

    Article  PubMed Central  PubMed  Google Scholar 

  4. Kalmar A, Wichmann B, Galamb O et al (2013) Gene expression analysis of normal and colorectal cancer tissue samples from fresh frozen and matched formalin-fixed, paraffin-embedded (FFPE) specimens after manual and automated RNA isolation. Methods 59(1):S16–19. doi:10.1016/j.ymeth.2012.09.011

    Article  CAS  PubMed  Google Scholar 

  5. von Ahlfen S, Missel A, Bendrat K et al (2007) Determinants of RNA quality from FFPE samples. PLoS One 2(12):e1261. doi:10.1371/journal.pone.0001261

    Article  Google Scholar 

  6. Macabeo-Ong M, Ginzinger DG, Dekker N et al (2002) Effect of duration of fixation on quantitative reverse transcription polymerase chain reaction analyses. Modern Pathol Off J US Canadian Acad Pathol Inc 15(9):979–987. doi:10.1097/01.MP.0000026054.62220.FC

    Google Scholar 

  7. Solassol J, Ramos J, Crapez E et al (2011) KRAS mutation detection in paired frozen and formalin-fixed paraffin-embedded (FFPE) colorectal cancer tissues. Int J Mol Sci 12(5):3191–3204. doi:10.3390/ijms12053191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Jemal A, v F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  9. Cancer Genome Atlas N (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487(7407):330–337. doi:10.1038/nature11252

    Article  Google Scholar 

  10. Caldwell GM, Jones C, Gensberg K et al (2004) The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res 64(3):883–888

    Article  CAS  PubMed  Google Scholar 

  11. Oberwalder M, Zitt M, Wontner C et al (2008) SFRP2 methylation in fecal DNA–a marker for colorectal polyps. Int J Color Dis 23(1):15–19. doi:10.1007/s00384-007-0355-2

    Article  Google Scholar 

  12. Wang DR, Tang D (2008) Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J Gastroenterol WJG 14(4):524–531

    Article  CAS  PubMed  Google Scholar 

  13. Takeda M, Nagasaka T, Dong-Sheng S et al (2011) Expansion of CpG methylation in the SFRP2 promoter region during colorectal tumorigenesis. Acta Med Okayama 65(3):169–177

    CAS  PubMed  Google Scholar 

  14. Lind GE, Ahlquist T, Kolberg M et al (2008) Hypermethylated MAL gene - a silent marker of early colon tumorigenesis. J Transl Med 6:13. doi:10.1186/1479-5876-6-13

    Article  PubMed Central  PubMed  Google Scholar 

  15. Wojdacz TK, Dobrovic A (2007) Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res 35(6):e41. doi:10.1093/nar/gkm013

    Article  PubMed Central  PubMed  Google Scholar 

  16. Kalmar A, Peterfia B, Wichmann B et al (2015) Comparison of automated and manual DNA isolation methods for DNA methylation analysis of biopsy, fresh frozen, and formalin-fixed paraffin-embedded colorectal cancer samples. Journal of laboratory automation. doi:10.1177/2211068214565903

    PubMed  Google Scholar 

  17. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147(1):195–197

    Article  CAS  PubMed  Google Scholar 

  18. Gotoh O (1982) An improved algorithm for matching biological sequences. J Mol Biol 162(3):705–708

    Article  CAS  PubMed  Google Scholar 

  19. Luo C, Tsementzi D, Kyrpides N et al (2012) Direct comparisons of illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 7(2):e30087. doi:10.1371/journal.pone.0030087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. TCGA Research Network: http://cancergenome.nih.gov/

Download references

Acknowledgments

This study was supported by the National Research, Development and Innovation Office (KMR-12-1-2012-0216 grant) and Hungarian Scientific Research Fund (OTKA-103244 and OTKA-K111743 grants). The authors would like to gratefully acknowledge the support and assistance from Roche Diagnostics GmbH. We would like to thank Gabriella Kónyáné Farkas (Semmelweis University) for her technical assistance in the study.

Conflict of Interest

The Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Kalmár.

Additional information

Alexandra Kalmár and Bálint Péterfia contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalmár, A., Péterfia, B., Hollósi, P. et al. Bisulfite-Based DNA Methylation Analysis from Recent and Archived Formalin-Fixed, Paraffin Embedded Colorectal Tissue Samples. Pathol. Oncol. Res. 21, 1149–1156 (2015). https://doi.org/10.1007/s12253-015-9945-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-015-9945-4

Keywords

Navigation