Skip to main content

Advertisement

Log in

Clinicopathological Sex- Related Relevance of Musashi1 mRNA Expression in Esophageal Squamous Cell Carcinoma Patients

  • Research
  • Published:
Pathology & Oncology Research

Abstract

The cancer stem cell theory is considered as the spotlight of cancer biology, in which a subpopulation of tumor cells show unlimited proliferative and self renewal capacities. Post-transcriptional regulation is involved in different cellular functions such as cell differentiation and proliferation which results in cellular diversity. Musashi1 (Msi1) is one of the most important RNA-binding proteins (RBPs) which are involved in translational inhibition. Although, Msi1 targets are largely unknown, p21WAF-1, a cell cycle regulator, and Numb, inhibitor of notch signaling pathway, are well-known factors which are suppressed by the Msi1 in normal and cancer stem cells. Msi1 expression in tumor tissues from 53 ESCC patients was compared to normal tissues using real-time polymerase chain reaction (PCR). Msi1 was significantely overexpressed in 41.5 % of tumor samples and we observed a significant correlation between Msi1 expression and sex, in which the males had shown a higher level of Msi1 expression in comparison with the females (2.00 Vs 0.78 fold changes, p = 0.05). In this study, we assessed whether Msi1 is expressed in ESCC samples suggesting this protein as a novel cancer stem cell marker which requires further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gholamin M, Moaven O, Memar B, Farshchian M, Naseh H, Malekzadeh R, Sotoudeh M, Rajabi-Mashhadi MT, Forghani MN, Farrokhi F, Abbaszadegan MR (2009) Overexpression and interactions of interleukin-10, transforming growth factor beta, and vascular endothelial growth factor in esophageal squamous cell carcinoma. World J Surg 33(7):1439–1445

    Article  PubMed  Google Scholar 

  2. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40(5):499–507

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902

    Article  PubMed  CAS  Google Scholar 

  4. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342

    Google Scholar 

  5. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11(2):113–127

    Google Scholar 

  6. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Grzmil M, Hemmings BA (2012) Translation regulation as a therapeutic target in cancer. Cancer Res 72(16):3891–3900

    Google Scholar 

  8. Battelli C, Nikopoulos GN, Mitchell JG, Verdi JM (2006) The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Mol Cell Neurosci 31(1):85–96

    Article  PubMed  CAS  Google Scholar 

  9. Imai T, Tokunaga A, Yoshida T, Hashimoto M, Mikoshiba K, Weinmaster G, Nakafuku M, Okano H (2001) The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol Cell Biol 21(12):3888–3900

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Kawahara H, Imai T, Imataka H, Tsujimoto M, Matsumoto K, Okano H (2008) Neural RNA-binding protein Musashi1 inhibits translation initiation by competing with eIF4G for PABP. J Cell Biol 181(4):639–653

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Okano H, Kawahara H, Toriya M, Nakao K, Shibata S, Imai T (2005) Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 306(2):349–356

    Article  PubMed  CAS  Google Scholar 

  12. Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17(1):27–41

    Article  PubMed  Google Scholar 

  13. Di Marcotullio L, Ferretti E, Greco A, De Smaele E, Po A, Sico MA, Alimandi M, Giannini G, Maroder M, Screpanti I, Gulino A (2006) Numb is a suppressor of Hedgehog signalling and targets Gli1 for Itch-dependent ubiquitination. Nat Cell Biol 8(12):1415–1423

    Article  PubMed  CAS  Google Scholar 

  14. McGill MA, McGlade CJ (2003) Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem 278(25):23196–23203

    Article  PubMed  CAS  Google Scholar 

  15. Wakamatsu Y, Maynard TM, Jones SU, Weston JA (1999) NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23(1):71–81

    Article  PubMed  CAS  Google Scholar 

  16. Glazer RI, Wang XY, Yuan H, Yin Y (2008) Musashi1: a stem cell marker no longer in search of a function. Cell Cycle 7(17):2635–2639

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Wang XY, Yin Y, Yuan H, Sakamaki T, Okano H, Glazer RI (2008) Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol Cell Biol 28(11):3589–3599

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP (2005) p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev 19(12):1485–1495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Li L, Yuan H, Weaver CD, Mao J, Farr GH 3rd, Sussman DJ, Jonkers J, Kimelman D, Wu D (1999) Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. Embo J 18(15):4233–4240

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Toda M, Iizuka Y, Yu W, Imai T, Ikeda E, Yoshida K, Kawase T, Kawakami Y, Okano H, Uyemura K (2001) Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia 34(1):1–7

    Article  PubMed  CAS  Google Scholar 

  21. Gotte M, Wolf M, Staebler A, Buchweitz O, Kelsch R, Schuring AN, Kiesel L (2008) Increased expression of the adult stem cell marker Musashi-1 in endometriosis and endometrial carcinoma. J Pathol 215(3):317–329

    Article  PubMed  CAS  Google Scholar 

  22. Shu HJ, Saito T, Watanabe H, Ito JI, Takeda H, Okano H, Kawata S (2002) Expression of the Musashi1 gene encoding the RNA-binding protein in human hepatoma cell lines. Biochem Biophys Res Commun 293(1):150–154

    Article  PubMed  CAS  Google Scholar 

  23. Schulenburg A, Cech P, Herbacek I, Marian B, Wrba F, Valent P, Ulrich-Pur H (2007) CD44-positive colorectal adenoma cells express the potential stem cell markers musashi antigen (msi1) and ephrin B2 receptor (EphB2). J Pathol 213(2):152–160

    Article  PubMed  CAS  Google Scholar 

  24. Forghanifard MM, Moaven O, Farshchian M, Montazer M, Raeisossadati R, Abdollahi A, Moghbeli M, Nejadsattari T, Parivar K, Abbaszadegan MR (2012) Expression analysis elucidates the roles of MAML1 and Twist1 in esophageal squamous cell carcinoma aggressiveness and metastasis. Ann Surg Oncol 19(3):743–749

    Google Scholar 

  25. Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, Ogawa Y, Toyama Y, Miyata T, Okano H (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22(1–2):139–153

    Article  PubMed  CAS  Google Scholar 

  26. Siddall NA, McLaughlin EA, Marriner NL, Hime GR (2006) The RNA-binding protein Musashi is required intrinsically to maintain stem cell identity. Proc Natl Acad Sci U S A 103(22):8402–8407

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–15183

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Yokota N, Mainprize TG, Taylor MD, Kohata T, Loreto M, Ueda S, Dura W, Grajkowska W, Kuo JS, Rutka JT (2004) Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene 23(19):3444–3453

    Article  PubMed  CAS  Google Scholar 

  29. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165–172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Gonzalez F, Barragan Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R, Batlle Morera L, Rodriguez Piza I, Izpisua Belmonte JC (2009) Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci U S A 106(22):8918–8922

    Article  PubMed Central  PubMed  Google Scholar 

  31. Stadtfeld M, Maherali N, Borkent M, Hochedlinger K (2010) A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods 7(1):53–55

    Google Scholar 

  32. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  34. Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P, Ashton G, Clarke R, Sakakibara S, Okano H (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71(1):28–41

    Article  PubMed  CAS  Google Scholar 

  35. Bobryshev YV, Freeman AK, Botelho NK, Tran D, Levert-Mignon AJ, Lord RV (2010) Expression of the putative stem cell marker Musashi-1 in Barrett’s esophagus and esophageal adenocarcinoma. Dis Esophagus 23(7):580–589

    Google Scholar 

  36. Nikpour P, Baygi ME, Steinhoff C, Hader C, Luca AC, Mowla SJ, Schulz WA (2011) The RNA binding protein Musashi1 regulates apoptosis, gene expression and stress granule formation in urothelial carcinoma cells. J Cell Mol Med 15(5):1210–1224

    Google Scholar 

  37. Nikpour P, Emadi-Baygi M, Mohhamad-Hashem F, Maracy MR, Haghjooy-Javanmard S (2013) MSI1 overexpression in diffuse type of gastric cancer. Pathol Res Pract 209(1):10–13

    Google Scholar 

  38. Todaro M, Francipane MG, Medema JP, Stassi G (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138(6):2151–2162

    Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the Vice Chancellor for Research at Mashhad University of Medical Sciences, and was part of a Ph.D. student’s dissertation, No. 89633 and 921202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Abbaszadegan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moghbeli, M., Forghanifard, M.M., Aarabi, A. et al. Clinicopathological Sex- Related Relevance of Musashi1 mRNA Expression in Esophageal Squamous Cell Carcinoma Patients. Pathol. Oncol. Res. 20, 427–433 (2014). https://doi.org/10.1007/s12253-013-9712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-013-9712-3

Keywords

Navigation