Skip to main content

Advertisement

Log in

Expression Levels of MicroRNA-192 and -215 in Gastric Carcinoma

  • Research
  • Published:
Pathology & Oncology Research

Abstract

MicroRNAs (miRNAs) are small, non-coding RNAs of endogenous origin. Accumulating studies have shown aberrant miRNA expression plays an important role in many tumor types. miR-192 and -215, which have the same “seed region”, have not been comprehensively investigated using a large number of cases in gastric cancer. The total RNA was extracted from 118 gastric cancer tissues and three gastric cancer cell lines as well as matched non-tumor adjacent tissues (NATs). After polyadenylation and reverse transcription, expression levels of miR-192 and -215 were determined by real-time PCR and calculation using the 2-∆∆CT method for evaluation of the association between miR-192, and -215 expression levels and clinicopathological characteristics. There were no significant differences in miR-192 and -215 expression levels between gastric cancer tissues and non-tumor counterparts (both p > 0.05, paired t-test). Interestingly, miR-192 and -215 were down-regulated in MGC-803 cells, BGC-823 cells and SGC-7901 cells (all p < 0.01, paired t-test). Also, the down-regulation of miR-192 and -215 was demonstrated to be associated with increased tumor sizes (both p = 0.003, Mann–Whitney U test) and advanced Borrmann type tumors (p = 0.015 and p = 0.044, respectively, Kruskal-Wallis H test). Moreover, the expression of miR-192 was significantly lower in the pT4 stage of gastric cancer than in pT1, pT2 and pT3 stages (p = 0.026). Furthermore, there was a strong correlation between miR-192 and -215 in gastric cancer tissues (p < 0.001, Pearson regressions). miR-192 and -215 might be related to the proliferation and invasion of gastric cancer. Potentially, they could become important biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66:7390–7394

    Article  PubMed  CAS  Google Scholar 

  3. Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  PubMed  CAS  Google Scholar 

  4. Hwang HW, Mendell JT (2006) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 94:776–780

    Article  PubMed  CAS  Google Scholar 

  5. Cho WC (2007) OncomiRs: the discovery and progress of microRNAs in cancers. Mol Canc 6:60

    Article  Google Scholar 

  6. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    Article  PubMed  CAS  Google Scholar 

  7. Bandi N, Vassella E (2011) miR-34a and miR-15a/16 are co-regulated in non-small cell lung cancer and control cell cycle progression in a synergistic and Rb-dependent manner. Mol Canc 10:55

    Article  CAS  Google Scholar 

  8. Feber A, Xi L, Pennathur A et al (2011) MicroRNA prognostic signature for nodal metastases and survival in esophageal adenocarcinoma. Ann Thorac Surg 91:1523–1530

    Article  PubMed  Google Scholar 

  9. Guo J, Miao Y, Xiao B et al (2009) Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol 24:652–657

    Article  PubMed  CAS  Google Scholar 

  10. Park JK, Henry JC, Jiang J et al (2011) miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun 406:518–523

    Article  PubMed  CAS  Google Scholar 

  11. Chiang Y, Song Y, Wang Z et al (2011) Aberrant expression of miR-203 and its clinical significance in gastric and colorectal cancers. J Gastrointest Surg 15:63–67

    Article  PubMed  Google Scholar 

  12. Marchini S, Cavalieri D, Fruscio R et al (2011) Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. Lancet Oncol 12:273–285

    Article  PubMed  CAS  Google Scholar 

  13. Tsukamoto Y, Nakada C, Noguchi T et al (2010) MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res 70:2339–2349

    Article  PubMed  CAS  Google Scholar 

  14. Chen Y, Song Y, Wang Z, Yue Z, Xu H, Xing C (2010) Altered expression of miR-148a and miR-152 in gastrointestinal cancers and its clinical significance. J Gastrointest Surg 14:1170–1179

    Article  PubMed  Google Scholar 

  15. Song YX, Yue ZY, Wang ZN et al (2011) MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol Canc 10:1

    Article  CAS  Google Scholar 

  16. Xiong X, Ren HZ, Li MH, Mei JH, Wen JF, Zheng CL (2011) Down-regulated miRNA-214 induces a cell cycle G1 arrest in gastric cancer cells by up-regulating the PTEN protein. Pathol Oncol Res 17:931–937

    Article  PubMed  CAS  Google Scholar 

  17. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39:519–525

    Article  PubMed  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative pcr and the 2 (delta delta c(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  19. Du Y, Xu Y, Ding L et al (2009) Down-regulation of miR-141 in gastric cancer and its involvement in cell growth. J Gastroenterol 44:556–561

    Article  PubMed  CAS  Google Scholar 

  20. Shah AA, Leidinger P, Blin N, Meese E (2010) miRNA: small molecules as potential novel biomarkers in cancer. Curr Med Chem 17:4427–4432

    Article  PubMed  CAS  Google Scholar 

  21. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Canc Cell 9:189–198

    Article  CAS  Google Scholar 

  22. Mathé EA, Nguyen GH, Bowman ED et al (2009) MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res 15:6192–6200

    Article  PubMed  Google Scholar 

  23. Gui J, Tian Y, Wen X et al (2011) Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin Sci (Lond) 120:183–193

    Article  CAS  Google Scholar 

  24. Braun CJ, Zhang X, Savelyeva I et al (2008) p53-responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res 68:10094–10104

    Article  PubMed  CAS  Google Scholar 

  25. Georges SA, Biery MC, Kim SY et al (2008) Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res 68:10105–10112

    Article  PubMed  CAS  Google Scholar 

  26. Davidson LA, Wang N, Shah MS, Lupton JR, Ivanov I, Chapkin RS (2009) n-3 polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis 30:2077–2084

    Article  PubMed  CAS  Google Scholar 

  27. Baffa R, Fassan M, Volinia S et al (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219:214–221

    Article  PubMed  CAS  Google Scholar 

  28. Jin Z, Selaru FM, Cheng Y et al (2011) MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro. Oncogene 30:1577–1585

    Article  PubMed  CAS  Google Scholar 

  29. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  30. Lee EJ, Gusev Y, Jiang J et al (2007) Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer 120:1046–1054

    Article  PubMed  CAS  Google Scholar 

  31. Quach H, Barreiro LB, Laval G et al (2009) Signatures of purifying and local positive selection in human miRNAs. Am J Hum Genet 84:316–327

    Article  PubMed  CAS  Google Scholar 

  32. Kim DY, Joo JK, Park YK, Ryu SY, Kim YJ, Kim SK (2007) Predictors of long-term survival in node-positive gastric carcinoma patients with curative resection. Langenbeck Arch Surg 392:131–134

    Article  Google Scholar 

  33. Shiraishi N, Inomata M, Osawa N, Yasuda K, Adachi Y, Kitano S (2000) Early and late recurrence after gastrectomy for gastric carcinoma. Cancer 89:255–261

    Article  PubMed  CAS  Google Scholar 

  34. Kim JP, Kim YW, Yang HK, Noh DY (1994) Significant prognostic factors by multivariate analysis of 3926 gastric cancer patients. World J Surg 18:872–878

    Article  PubMed  Google Scholar 

  35. Pichiorri F, Suh SS, Rocci A et al (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Canc Cell 18:367–381

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Science Foundation of China (No. 30972879 and No. 81172370), Specialized Research Fund for the Doctoral Program of Higher Education (No. 200801590006) and Natural Science Foundation of Liaoning Province (No. 20092129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenning Wang.

Additional information

Yeunpo Chiang and Xin Zhou contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, Y., Zhou, X., Wang, Z. et al. Expression Levels of MicroRNA-192 and -215 in Gastric Carcinoma. Pathol. Oncol. Res. 18, 585–591 (2012). https://doi.org/10.1007/s12253-011-9480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-011-9480-x

Keywords

Navigation