Skip to main content
Log in

The Probable Role of Tumor Stem Cells for Lymph Node Metastasis in Supraglottic Carcinoma

  • Published:
Pathology & Oncology Research

Abstract

Tumor stem cells (TSC), which are considered as likely candidates for the origin of cancer, are deduced to be responsible for tumor metastasis theoretically. We therefore investigated whether TSC were associated with lymph node metastasis in supraglottic carcinoma. Immunohistochemistry was performed for CD44, CD133, and LYVE-1 to detect TSC and lymphatic vessel density (LVD) in 66 primary supraglottic carcinoma tissue samples from 30 patients with lymph node metastasis (N+) and 36 patients without (N0). Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot were used to detect the expression of CD44 and CD133 at mRNA and protein levels in N+ and N0 primary tumors. The LVD was 22.4 ± 10.26 in 30N+ and 6.8 ± 4.09 in 36N0 samples subjected to immunohistochemistry, which was associated with their clinical nodal stages. There were 43.33% CD44-positive and 93.33% CD133-positive samples in 30N+, and 13.89% CD44-positive and 44.44% CD133-positive samples in 36N0 (P < 0.05). However, in each positive slide, there were only 5∼10% CD44-positive cells, but 70∼85% CD133-possitive cells. The expressions of CD44 and CD133 of N+ obtained through RT-PCR and Western blot were significantly higher than those of N0. These results suggest that TSC identified through CD44-positive cells in N+ were significantly higher than those in N0, indicating that TSC may be responsible for lymph node metastasis. CD133, whose expression is not restricted to TSC, may be unspecific for TSC identification in hypostatic supraglottic carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kyzas PA, Geleff S, Batistatou A et al (2005) Evidence for lymphangiogenesis and its prognostic implications in head and neck squamous cell carcinoma. J Pathol 206(2):170–7

    Article  PubMed  Google Scholar 

  2. Zhao D, Pan J, Li XQ et al (2008) Intratumoral lymphangiogenesis in oral squamous cell carcinoma and its clinicopathological significance. J Oral Pathol Med 37(10):616–25

    Article  PubMed  CAS  Google Scholar 

  3. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–84

    Article  PubMed  CAS  Google Scholar 

  4. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–5

    Article  PubMed  CAS  Google Scholar 

  5. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea: a paradigm shift. Cancer Res 66:1883–1890

    Article  PubMed  CAS  Google Scholar 

  6. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902

    Article  PubMed  CAS  Google Scholar 

  7. Prince ME, Ailles LE (2008) Cancer stem cells in head and neck squamous cell cancer. J Clin Oncol 26(17):2871–5

    Article  PubMed  Google Scholar 

  8. Ailles L, Prince M (2009) Cancer stem cells in head and neck squamous cell carcinoma. Methods Mol Biol 568:175–93

    Article  PubMed  Google Scholar 

  9. Wei XD, Zhou L, Cheng L et al (2009) In vivo investigation of CD133 as a putative marker of cancer stem cells in Hep-2 cell line. Head and neck 31:94–101

    Article  PubMed  CAS  Google Scholar 

  10. Audet N, Beasley NJ, MacMillan C et al (2005) Lymphatic vessel density, nodal metastases, and prognosis in patients with head and neck cancer. Arch Otolaryngol Head Neck Surg 131:1065–70

    Article  PubMed  Google Scholar 

  11. Koskinen WJ, Bono P, Leivo I et al (2005) Lymphatic vessel density in vocal cord carcinomas assessed with LYVE-1 receptor expression. Radiother Oncol 77:172–5

    Article  PubMed  CAS  Google Scholar 

  12. Gao P, Zhou GY, Yin G et al (2006) Lymphatic vessel density as a prognostic indicator for patients with stage I cervical carcinoma. Hum Pathol 37:719–25

    Article  PubMed  Google Scholar 

  13. Mori D, Yamasaki F, Shibaki M et al (2007) Lateral peritumoral lymphatic vessel invasion can predict lymph node metastasis in esophageal squamous cell carcinoma. Mod Pathol 20:694–700

    Article  PubMed  Google Scholar 

  14. Maula SM, Luukkaa M, Grénman R et al (2003) Intratumoral lymphatics are essential for the metastatic spread and prognosis in squamous cell carcinomas of the head and neck region. Cancer Res 63:1920–6

    PubMed  CAS  Google Scholar 

  15. Gao P, Zhou GY, Zhang QH et al (2008) Clinicopathological significance of peritumoral lymphatic vessel density in gastric carcinoma. Cancer Lett 263:223–230

    Article  PubMed  CAS  Google Scholar 

  16. Wang J, Guo LP, Chen LZ et al (2007) Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 67:3716–24

    Article  PubMed  CAS  Google Scholar 

  17. Bianchini C, Ciorba A, Pelucchi S et al (2008) Head and neck cancer: the possible role of stem cells. Eur Arch Otorhinolaryngol 265:17–20

    Article  PubMed  CAS  Google Scholar 

  18. Harper LJ, Piper K, Common J et al (2007) Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med 36:594–603

    Article  PubMed  Google Scholar 

  19. Pries R, Witrkopf N, Trenkle T et al (2008) Potential stem cell marker CD44 is constitutively expressed in permanent cell lines of head and neck cancer. In Vivo 22:89–92

    PubMed  Google Scholar 

  20. Wright MH, Calcagno AM, Salcido CD et al (2008) Brca1 breast tumors contain distinct CD44+/CD24−and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10:R10

    Article  PubMed  Google Scholar 

  21. Du L, Wang H, He L (2008) CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 14(21):6751–60

    Article  PubMed  CAS  Google Scholar 

  22. Zito G, Richiusa P, Bommarito A et al (2008) In vitro identification and characterization of CD133 (pos) cancer stem-like cells in anaplastic thyroid carcinoma cell lines. PLoS One 3:e3544

    Article  PubMed  Google Scholar 

  23. Choi D, Lee HW, Hur KY et al (2009) Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J Gastroenterol 15(18):2258–64

    Article  PubMed  CAS  Google Scholar 

  24. Griguer CE, Oliva CR, Gobin E et al (2008) CD133 is a marker of bioenergetic stress in human glioma. PLoS One 3(11):e3655

    Article  PubMed  Google Scholar 

  25. Richardson GD, Robson CN, Lang SH et al (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117:3539–45

    Article  PubMed  CAS  Google Scholar 

  26. Olempska M, Eisenach PA, Ammerpohl O et al (2007) Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int 6:92–7

    PubMed  CAS  Google Scholar 

  27. Immervoll H, Hoem D, Sakariassen PØ et al (2008) Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 8:48

    Article  PubMed  Google Scholar 

  28. Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133−metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, S., Tian, J., Lv, Z. et al. The Probable Role of Tumor Stem Cells for Lymph Node Metastasis in Supraglottic Carcinoma. Pathol. Oncol. Res. 17, 33–38 (2011). https://doi.org/10.1007/s12253-010-9271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-010-9271-9

Keywords

Navigation