Skip to main content

Advertisement

Log in

Serum sFas and Tumor Tissue FasL Negatively Correlated with Survival in Egyptian Patients Suffering from Breast Ductal Carcinoma

  • Original Paper
  • Published:
Pathology & Oncology Research

Abstract

Fas (CD95-APO-1), a member of tumor necrosis factor receptor super-family, exists in two forms, transmembrane and soluble (sFas). It had been suggested that circulating sFas levels and/or tissue FasL may reflect the severity of invasive breast ductal carcinoma. Few studies showed that neither DNA-index nor ploidy is an independent prognostic indicator, and there is no correlation with clinical outcome. The S-phase fraction (SPF) has been shown to be useful prognostic factor in both node-negative and node-positive tumors. The present work was done to find a correlation between sFas, tissue FasL, ploidy and SPF with prognostic factors and survival of breast ductal carcinoma patients. The present study included two groups; a patients group comprised 30 patients with breast ductal carcinoma and a control group that comprised 15 patients with benign breast swellings. Serum sFas was measured using commercially available ELISA kit and tissue FasL expression was studied using avidin–biotine immunohistochemical staining technique. Cell cycle studies were performed using flow cytometry. Serum sFas was significantly higher in breast ductal carcinoma group than in the benign breast swelling control group. A significant negative correlation between serum sFas and overall survival was found. Tissue FasL expression was directly correlated with distant metastasis and poor overall survival. A significant direct correlation was found between moderate and high SPF with worse pathologic parameters. Serum sFas level, tissue FasL immuno-expression and S-phase fraction are independent prognostic factors in breast ductal carcinoma cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 156:1415–1430

    Google Scholar 

  2. Saas P, Walker PR, Hahne M et al (1997) Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain? J Clin Invest 99:1173–1178

    Article  CAS  PubMed  Google Scholar 

  3. Schneioer P, Bodmer JL, Holler N et al (1997) Characterization of Fas (Apo-1, CD95)-Fas ligand interaction. J Biol Chem 272:18827–18833

    Article  Google Scholar 

  4. Griffith TS, Ferguson TA (1997) The role of FasL induced apoptosis in immune privilege. Immunol Today 18:2240–2244

    Article  Google Scholar 

  5. Müschen M, Moers C, Warskulat U, Even J, Niederacher D, Beckmann MW (2000) CD95 ligand expression as a mechanism of immune escape in breast cancer. Immunology 99(1):69–77

    Article  PubMed  Google Scholar 

  6. Sheen-Chen SM, Chen HS, Eng HL, Chen WJ (2003) Circulating soluble Fas in patients with breast cancer. World J Surg 27(1):10–13, Jan

    Article  PubMed  Google Scholar 

  7. Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand: a novel member of the tumor necrosis factor family. Cell 75:1169–1186

    Article  CAS  PubMed  Google Scholar 

  8. Keane MM, Ettenberg SA, Lowrey GA, Russell EK, Lipkowitz S (1996) Fas expression and function in normal and malignant breast cell lines. Cancer Res 56:4791–4798

    CAS  PubMed  Google Scholar 

  9. Harrnring C, Reimer T, Jeschke U, Makovitzky J, Kruger K, Gerber B, Kabelitz D, Friese K (2000) Expression of the apoptosis-inducing ligands FasL and TRAIL in malignant and benign human breast tumors. Histochem Cell Biol 113:189–194

    Article  Google Scholar 

  10. Mullauer L, Mosberger I, Grusch M, Rudas M, Chott A (2000) Fas ligand is expressed in normal breast epithelial cells and is frequently upregulated in breast cancer. J Pathol 190:20–30

    Article  CAS  PubMed  Google Scholar 

  11. Mann B, Gratchev A, Bohm C et al (1999) FasL is more frequently expressed in liver metastases of colorectal cancer than in matched primary carcinomas. Br J Cancer 79:1262–1269

    Article  CAS  PubMed  Google Scholar 

  12. Munakata S, Enomoto T, Tsujimoto M et al (2000) Expression of Fas ligand and other apoptosis-related genes and their prognostic significance in epithelial ovarian neoplasms. Br J Cancer 82:1446–1452

    CAS  PubMed  Google Scholar 

  13. Nagashima H, Mori M, Sadanaga N et al (2001) Expression of Fas ligand in gastric carcinoma relates to lymph node metastasis. Int J Oncol 18:1157–1162

    CAS  PubMed  Google Scholar 

  14. Munakata S, Watanabe O, Ohashi K, Morino H (2005) Expression of Fas ligand and bcl-2 in cervical carcinoma and their prognostic significance. Am J Clin Pathol 123(6):879–885

    Article  CAS  PubMed  Google Scholar 

  15. Gatierrez LS, Eliza M, Niven-Fairchild T, Naftolin F, Mor G (1999) The Fas/Fas-ligand system: a mechanism for immune evasion in human breast carcinomas. Breast Cancer Res Treat 54(3):245–253

    Article  Google Scholar 

  16. Robert I (2002) New concepts for the study of anticancer drug resistance [French]. Bull. Cancer 89:17–22

    PubMed  Google Scholar 

  17. Hortobagyi GN (2001) Adjuvant systemic therapy for early breast cancer: progress and controversies. Clin Cancer Res 7:1839–1842

    CAS  PubMed  Google Scholar 

  18. Ross JS, Linette GP, Stec J, Ross MS, Anwar S, Boguniewicz A (2003) DNA ploidy and cell cycle analysis in breast cancer. Am J Clin Pathol 120(Suppl):S72–S84, (ISSN: 0002-9173)

    PubMed  Google Scholar 

  19. Chávez-Uribe EM, Viñuela JE, Cameselle-Teijeiro J, Forteza J, Puñal JA, Otero IL, Puente-Dominguez JL (2002) DNA ploidy and cytonuclear area of peritumoral and paratumoral samples of mastectomy specimens: a useful prognostic marker? Eur J Surg 168(1):37–41

    Article  PubMed  Google Scholar 

  20. Chassevent A, Jourdan ML, Romain S et al (2001) S-phase fraction and DNA ploidy in 633 T1T2 breast cancers: a standardized flow cytometric study. Clin Cancer Res 7(4):909–917, (ISSN: 1078-0432)

    CAS  PubMed  Google Scholar 

  21. Greene FL, Page DL, Fleming ID et al (2002) Breast IN: American joint committee on cancer, AJCC cancer staging manual, 6th edn. Springer, New York, p 171

    Google Scholar 

  22. Burtis CA, Ashwood ER, Bruns DE (2006) Teitz text book of clinical chemistry and molecular diagnostics, 4th edn. Elsevier Saunders, St Louis, pp 870–871, 797–803, 582–590, 546–549, 604–611, 1892–1904 & 1698

    Google Scholar 

  23. Bouillon R, Coopman SW, Degroote DEH, Eliard PH (1990) Immunoradiometric assay of parathyrin polyclonal and monoclonal region specific antibodies. Clin Chem 36(2):271–276

    CAS  PubMed  Google Scholar 

  24. Chen J, Zhou T, Liu C, Shapiro JP, Brauuer MJ, Kieler MC (1994) Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263:1759–1762

    Article  Google Scholar 

  25. Chamness GC, McGuire WL (1979) Methods for analyzing steroid receptors in human breast cancer. In: McGuire WL (ed) Breast cancer. Advances in research and treatment. Plenum, New York, p 149

    Google Scholar 

  26. Bębenek M, Duś D, Koźlak J (2006) Fas and Fas ligand as prognostic factors in human breast carcinoma. Med Sci Monit 12(11):CR457–CR461

    PubMed  Google Scholar 

  27. Almasri NM, Al Hamad M (2005) Immunohistochemical evaluation of human epidermal growth factor receptor 2 and estrogen and progesterone receptors in breast carcinoma in Jordan. Breast Cancer Res 7:R598–R604

    Article  CAS  PubMed  Google Scholar 

  28. Feichter GE, Müller A, Kaufmann M et al (1988) Correlation of DNA flow cytometric results and other prognostic factors in primary breast cancer. Int J Cancer 41:823–828

    Article  CAS  PubMed  Google Scholar 

  29. Feichter GE, Kaufmann M, Müller A et al (1989) DNA index and cell cycle analysis of primary breast cancer and synchronous axillary lymph node metastases. Breast Cancer Res Treat 13:17–22

    Article  CAS  PubMed  Google Scholar 

  30. Konrey GG, Pegram MD, Beryt M et al (1999) Therapeutic advantage of chemotherapy drugs in combination with herceptin against human breast cancer cells with HER-2/neu overexpression. Breast Cancer Res Treat 57:114

    Google Scholar 

  31. Kev TJ, Verkasalo PK, Banks E (2001) Epidemiology in breast cancer. Lancet Oncol 2(3):133–140

    Article  Google Scholar 

  32. Reeves GK, Beral V, Green J, Gathan T, Bull D (2006) Hormonal therapy of menopause and breast-cancer risk by histological type: a cohort study and meta-analysis. Lancet Oncol 7(11):910–918

    Article  CAS  PubMed  Google Scholar 

  33. Jager JJ, Jansen RL, Arendo JW (2002) Clinical relevance of apoptotic markers in breast cancer is not yet clear. Apoptosis 7:361–365

    Article  CAS  PubMed  Google Scholar 

  34. Zhang L, Levi E, Majumder P, Yu Y, Aboukameel A, Du J (2007) Transactivator of transcription-tagged cell cycle and apoptosis regulatory protein-1 peptides suppress the growth of human breast cancer cells in vitro and in vivo. Mol Cancer Ther 6:1661–1672

    Article  CAS  PubMed  Google Scholar 

  35. Motyl T, Gajkowska B, Zarzy J, Gajewska M, Lamparska P (2006) Apoptosis and autophagy in mammary gland remodeling and breast cancer chemotherapy. J Physiol Pharmacol 7:17–32

    Google Scholar 

  36. Sheen-Chen SM, Chen HS, Eng HL, Chenw J (2003) Circulating soluble Fas in patients with breast cancer. World J Surg 27:10–13

    Article  PubMed  Google Scholar 

  37. Djerbi M, Screpanti Y, Catrini A et al (1999) The inhibitor of death receptor signaling. FLICE inhibitory protein defines a new class of tumor progression factors. J Exp Med 190:1025–1031

    Article  CAS  PubMed  Google Scholar 

  38. Nemesansky E, Tasnadi K, Juhasz P (1971) Diagnostic value of alkaline phosphatase isoenzyme in cancer patients. Cancer 27:1388–1397

    Article  Google Scholar 

  39. Kao P, Cmklee GG, Taylor R, Heath H (1990) Parathyroid hormone related peptide in plasma of patients with hypercalcaemia and malignant lesions. Mayo Clin Proc 65:1399–1407

    CAS  PubMed  Google Scholar 

  40. Koomagi R, Volm M (1999) Expression of Fas (CD95/APO-1) and Fas ligand in lung cancer, its prognostic and predictive relevance. Int J Cancer 84:239–243

    Article  CAS  PubMed  Google Scholar 

  41. Nagao M, Nakajima Y, Hisanaga M et al (1999) The alteration of Fas receptor and ligand system in hepatocellular carcinoma: how do hepatoma cells escape from the host immune surveillance in vivo? Hepatology 30:413–421

    Article  CAS  PubMed  Google Scholar 

  42. Shibakita M, Tachibana M, Dahr DK et al (1999) Prognostic significance of Fas and Fas ligand expression in human esophageal cancer. Clin Cancer Res 5:2464–2469

    CAS  PubMed  Google Scholar 

  43. Ohno S, Tachibana M, Shibakita M et al (2000) Prognostic significance of Fas and Fas ligand system-associated apoptosis in gastric cancer. Ann Surg Oncol 7:750–757

    Article  CAS  PubMed  Google Scholar 

  44. Mottolese M, Buglioni S, Bracalenti C et al (2000) Prognostic relevance of altered Fas (CD95)-system in human breast cancer. Int J Cancer 89:127–132

    Article  CAS  PubMed  Google Scholar 

  45. Bebenek M, Duś D, Koźlak J (2007) Fas/Fas-ligand expressions in primary breast cancer are significant predictors of its skeletal spread. Anticancer Res 27(1A):215–218

    CAS  PubMed  Google Scholar 

  46. Sjöström J, Blomqvist C, Boguslawski K et al (2002) The predictive value of bcl-2, bcl-xL, bag-1, Fas, and FasL for chemotherapy response in advanced breast cancer. Clin Cancer Res 8:811–816

    PubMed  Google Scholar 

  47. Kute TE, Quadri Y, Muss H et al (1995) Flow cytometry in node-positive breast cancer: cancer and leukemia group B protocol 8869. Cytometry 22:297–306

    Article  CAS  PubMed  Google Scholar 

  48. Bryant J, Fisher B, Gunduz N et al (1998) S-phase fraction combined with other patient and tumor characteristics for the prognosis of node-negative, estrogen-receptor positive breast cancer. Breast Cancer Res Treat 51:239–253

    Article  CAS  PubMed  Google Scholar 

  49. Toikkanen S, Pylkkanen L, Joensuu H (1997) Invasive lobular carcinoma of the breast has better short- and long-term survival then invasive ductal carcinoma. Br J Cancer 76:1234–1240

    CAS  PubMed  Google Scholar 

  50. Remvikos Y, Magdelenat H, Dutrillaux B (1995) Genetic evolution of breast cancers. III. Age-dependent variations in the correlations between biological indicators of prognosis. Breast Cancer Res Treat 34:25–33

    Article  CAS  PubMed  Google Scholar 

  51. Leonardi E, Cristofori A, Caffo O, Dalla Palma P (1997) Cytometric DNA analysis and prognostic biomarkers in breast carcinoma. Expression of P53 product in the different ploidy classes. Anal Cell Pathol 15:31–45

    CAS  PubMed  Google Scholar 

  52. Dettmar P, Harbeck N, Thomssen C et al (1997) Prognostic impact of proliferation-associated factors MIB1 (Ki67) and s-phase fraction in node-negative breast cancer. Br J Cancer 75:1525–1533

    CAS  PubMed  Google Scholar 

  53. Rudolph P, Alm P, Heidebrech H et al (1999) Immunologic proliferation marker Ki-S2 as prognostic indicator for lymph node-negative breast cancer. Natl Cancer Inst (Bethesda) 91:271–278

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Y. El-Sammak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sarha, A.I., Magour, G.M., Zaki, S.M. et al. Serum sFas and Tumor Tissue FasL Negatively Correlated with Survival in Egyptian Patients Suffering from Breast Ductal Carcinoma. Pathol. Oncol. Res. 15, 241–250 (2009). https://doi.org/10.1007/s12253-008-9109-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-008-9109-x

Keywords

Navigation