Skip to main content
Log in

The VP2 protein of grass carp reovirus (GCRV) expressed in a baculovirus exhibits RNA polymerase activity

  • Research Article
  • Published:
Virologica Sinica

Abstract

The double-shelled grass carp reovirus (GCRV) is capable of endogenous RNA transcription and processing. Genome sequence analysis has revealed that the protein VP2, encoded by gene segment 2 (S2), is the putative RNA-dependent RNA polymerase (RdRp). In previous work, we have ex-pressed the functional region of VP2 that is associated with RNA polymerase activity (denoted as rVP2390–900) in E. coli and have prepared a polyclonal antibody against VP2. To characterize the GCRV RNA polymerase, a recombinant full-length VP2 (rVP2) was first constructed and expressed in a baculovirus system, as a fusion protein with an attached His-tag. Immunofluorescence (IF) assays, together with immunoblot (IB) analyses from both expressed cell extracts and purified Histagged rVP2, showed that rVP2 was successfully expressed in Sf9 cells. Further characterization of the replicase activity showed that purified rVP2 and GCRV particles exhibited poly(C)-dependent poly(G) polymerase activity. The RNA enzymatic activity required the divalent cation Mg2+, and was optimal at 28 °C. The results provide a foundation for further studies on the RNA polymerases of aquareoviruses during viral transcription and replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Attoui H, Fang Q, Mohd Jaafar F, Cantaloube J F, Biagini P, de Micco P, and de Lamballerie X. 2002. Common evolutionary origin of aquareoviruses and orthoreoviruses revealed by genome characterization of Golden shiner reovirus, Grass carp reovirus, Striped bass reovirus and golden ide reovirus (genus Aquareovirus, family Reoviridae). J Gen Virol, 83: 1941–1951.

    PubMed  CAS  Google Scholar 

  • Boyce M, Wehrfritz J, Noad R, Roy P. 2004. Purified recombinant bluetongue virus VP1 exhibits RNA replicase activity. J Virol, 78: 3994–4002.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bruenn J A. 2003. A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res, 31: 1821–1829.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng L, Fang Q, Shah S, Atanasov I C, and Zhou Z H. 2008. Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol, 382: 213–222.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cheng L, Zhu J, Hui W H, Zhang X, Honig B, Fang Q, Zhou Z H. 2010. Backbone model of an aquareovirus virion by cryoelectron microscopy and bioinformatics. J Mol Biol, 397: 852–863.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Estrozi L F, Settembre E C, Goret G, McClain B, Zhang X, Chen J Z, Grigorieff N, Harrison S C. 2012. Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. J Mol Biol, 425: 124–132.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fang Q, Zhu Z Y. 2002. Expression of Functional Domain of Grass Carp Reovirus(GCRV)RNA Dependent RNA Polymerase (RdRp)Gene in E. coli. Virol Sin, 1: 66–68.

    Google Scholar 

  • Fang Q, Ke L H, Cai Y Q. 1989. Growth characterization and high titre culture of GCHV. Virol Sin, 3: 314–319.

    Google Scholar 

  • Fang Q, Shah S, Liang Y, Zhou Z H. 2005. 3D reconstruction and capsid protein characterization of grass carp reovirus. Sci China C Life Sci, 48: 593–600.

    Article  PubMed  CAS  Google Scholar 

  • Fang Q, Seng E K, DAI W, Zhang L L. 2007. Construction and Co-expression of Grass Carp Reovirus VP6 Protein and Enhanced Green Fluorescence Protein in the Insect Cells. Virol Sin, 5: 397–404.

    Article  Google Scholar 

  • Fang Q, Seng E K, Ding Q Q, Zhang L L. 2008. Characterization of infectious particles of grass carp reovirus by treatment with proteases. Arch Virol, 153: 675–682.

    Article  PubMed  CAS  Google Scholar 

  • Fang Q, Attoui H, Cantaloube J F, Biagini P, Zhu Z, de Micco P, de Lamballerie X. 2000. Sequence of genome segments 1, 2, and 3 of the grass carp reovirus (Genus Aquareovirus, family Reoviridae). Biochem Biophys Res Commun, 274: 762–766.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer-Orta C, Arias A, Escarmis C, Verdaguer N. 2006. A comparison of viral RNA-dependent RNA polymerases. Curr Opin Struct Biol, 16: 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Tao Y, Reinisch K M, Harrison S C, Nibert M L. 2004. Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein-protein interfaces. Virus Res, 101: 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Levin D H, Mendelso. N, Schonber. M, Klett H, Silverst. S, Kapuler A M, Acs G. 1970. Properties of RNA Transcriptase in Reovirus Subviral Particles. Proceedings of the National Academy of Sciences of the United States of America, 66: 890-&.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li X M, Fang Q. 2013. High-resolution 3D structures reveal the biological functions of reoviruses. Virol Sin, 6: 318–325.

    Article  CAS  Google Scholar 

  • Lu X, McDonald S M, Tortorici M A, Tao Y J, Vasquez-Del Carpio R, Nibert M L, Patton J T, Harrison S C. 2008. Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. Structure, 16: 1678–1688.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Makeyev E V, Bamford D H. 2000. Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage phi6. EMBO J, 19: 124–133.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Makeyev E V, Bamford D H. 2000. The polymerase subunit of a dsRNA virus plays a central role in the regulation of viral RNA metabolism. EMBO J, 19: 6275–6284.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mansell E A, Patton J T. 1990. Rotavirus RNA replication: VP2, but not VP6, is necessary for viral replicase activity. J Virol, 64: 4988–4996.

    PubMed Central  PubMed  CAS  Google Scholar 

  • McDonald S M, Tao Y J, Patton J T. 2009. The ins and outs of four-tunneled Reoviridae RNA-dependent RNA polymerases. Curr Opin Struct Biol, 19: 775–782.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mertens P. 2004. The dsRNA viruses. Virus Res, 101: 3–13.

    Article  PubMed  CAS  Google Scholar 

  • Mertens P, Attoui H, Duncan R, Dermody T, et al. 2011. The Double Stranded RNA viruses. In Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Edited by Andrew MQ King, Adams Michael J, Carstens Eric B, Lefkowitz Elliot J. Oxford: Elsevier: 497–650.

    Google Scholar 

  • Mertens P P, Diprose J. 2004. The bluetongue virus core: a nanoscale transcription machine. Virus Res, 101: 29–43.

    Article  PubMed  CAS  Google Scholar 

  • Mertens P P C, Attoui H, Duncan R, Dermody T S et al. 2011. The Double Stranded RNA viruses. In Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Edited by King, Andrew M Q Adams Michael J, Carstens Eric B, Lefkowitz Elliot J. Oxford: Elsevier, 497–650.

    Google Scholar 

  • Patton J T, Jones M T, Kalbach A N, He Y W, Xiaobo J. 1997. Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J Virol, 71: 9618–9626.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rangel A A, Rockemann D D, Hetrick F M, Samal S K. 1999. Identification of grass carp haemorrhage virus as a new genogroup of aquareovirus. J Gen Virol, 80( Pt 9): 2399–2402.

    PubMed  CAS  Google Scholar 

  • Shao L, Guo H, Yan L M, Liu H, and Fang Q. 2013. Aquareovirus NS80 recruits viral proteins to its inclusions, and its C-terminal domain is the primary driving force for viral inclusion formation. PLoS One, 8: e55334.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Starnes M C, Joklik W K. 1993. Reovirus protein lambda 3 is a poly(C)-dependent poly(G) polymerase. Virology, 193: 356–366.

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Farsetta D L, Nibert M L, Harrison S C. 2002. RNA synthesis in a cage—structural studies of reovirus polymerase lambda3. Cell, 111: 733–745.

    Article  PubMed  CAS  Google Scholar 

  • Wehrfritz J M, Boyce M, Mirza S, Roy P. 2007. Reconstitution of bluetongue virus polymerase activity from isolated domains based on a three-dimensional structural model. Biopolymers, 86: 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Wen D, Yan L, Shao L, Guo H, Li X, Fang Q. 2013. Aquareovirus protein VP6 colocalizes with NS80 protein in infected and transfected cells. Virol J, 10: 133.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu W, Coombs K M. 2009. Conserved structure/function of the orthoreovirus major core proteins. Virus Res, 144: 44–57.

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Guo H, Sun X, Shao L, and Fang Q. 2012. Characterization of grass carp reovirus minor core protein VP4. Virol J, 9: 89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang X, Walker S B, Chipman P R, Nibert M L, Baker T S. 2003. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Nat Struct Biol, 10: 1011–1018.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., Liu, H., Li, X. et al. The VP2 protein of grass carp reovirus (GCRV) expressed in a baculovirus exhibits RNA polymerase activity. Virol. Sin. 29, 86–93 (2014). https://doi.org/10.1007/s12250-014-3366-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-014-3366-5

Keywords

Navigation