Skip to main content
Log in

A multiple functional protein: the herpes simplex virus type 1 tegument protein VP22

  • Published:
Virologica Sinica

Abstract

The herpes simplex virus type 1 (HSV-1) VP22, is one of the most abundant HSV-1 tegument proteins with an average stoichiometry of 2 400 copies per virion and conserved among alphaherpesvirinae. Many functions are attributed to VP22, including nuclear localization, chromatin binding, microtubule binding, induction of microtubule reorganization, intercellular transport, interaction with cellular proteins, such as template activating factor I (TAF-I) and nonmuscle myosin II A (NMIIA), and viral proteins including tegument protein VP16, pUS9 and pUL46, glycoprotein E (gE) and gD. Recently, many novel functions performed by the HSV-1 VP22 protein have been shown, including promotion of protein synthesis at late times in infection, accumulation of a subset of viral mRNAs at early times in infection and possible transcriptional regulation function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aints A, Guven H, Gahrton G, et al. 2001. Mapping of herpes simplex virus-1 vp22 functional domains for inter- and subcellular protein targeting. Gene Ther, 8(14): 1051–1056.

    Article  PubMed  CAS  Google Scholar 

  2. Beerens A M, Rots M G, de Vries E F, et al. 2007. Fusion of herpes simplex virus thymidine kinase to vp22 does not result in intercellular trafficking of the protein. Int J Mol Med, 19(5): 841–849.

    PubMed  CAS  Google Scholar 

  3. Bian J, Kiedrowski M, Mal N, et al. 2006. Engineered cell therapy for sustained local myocardial delivery of nonsecreted proteins. Cell Transplant, 15(1): 67–74.

    Article  PubMed  Google Scholar 

  4. Bian J, Popovic Z B, Benejam C, et al. 2007. Effect of cell-based intercellular delivery of transcription factor gata4 on ischemic cardiomyopathy. Circ Res, 100(11): 1626–1633.

    Article  PubMed  CAS  Google Scholar 

  5. Brandimarti R, Roizman B. 1997. Us9, a stable lysineless herpes simplex virus 1 protein, is ubiquitinated before packaging into virions and associates with proteasomes. Proc Natl Acad Sci USA, 94(25): 13973–13978.

    Article  PubMed  CAS  Google Scholar 

  6. Brignati M J, Loomis J S, Wills J W, et al. 2003. Membrane association of vp 22, a herpes simplex virus type 1 tegument protein. J Virol, 77(8): 4888–4898.

    Article  PubMed  CAS  Google Scholar 

  7. Duffy C, Mbong E F, Baines J D. 2009. Vp22 of herpes simplex virus 1 promotes protein synthesis at late times in infection and accumulation of a subset of viral mrnas at early times in infection. J Virol, 83(2): 1009–1017.

    Article  PubMed  Google Scholar 

  8. Duffy C, Lavail J H, Tauscher A N, et al. 2006. Characterization of a ul49-null mutant: Vp22 of herpes simplex virus type 1 facilitates viral spread in cultured cells and the mouse cornea. J Virol, 80(17): 8664–8675.

    Article  PubMed  CAS  Google Scholar 

  9. Elliott G, O’Hare P. 1997. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 88(2): 223–233.

    Article  PubMed  CAS  Google Scholar 

  10. Elliott G, P. Hare O’. 1998. Herpes simplex virus type 1 tegument protein vp22 induces the stabilization and hyperacetylation of microtubules. J Virol, 72(8): 6448–6455.

    PubMed  CAS  Google Scholar 

  11. Elliott G, O’Hare P. 1999. Intercellular trafficking of vp22-gfp fusion proteins. Gene Ther, 6(1): 149–151.

    Article  PubMed  CAS  Google Scholar 

  12. Elliott G, O’Hare P. 1999. Live-cell analysis of a green fluorescent protein-tagged herpes simplex virus infection. J Virol, 73(5): 4110–4119.

    PubMed  CAS  Google Scholar 

  13. Elliott G, Mouzakitis G, O’Hare P. 1995. Vp16 interacts via its activation domain with vp22, a tegument protein of herpes simplex virus, and is relocated to a novel macromo-lecular assembly in coexpressing cells. J Virol, 69(12): 7932–7941.

    PubMed  CAS  Google Scholar 

  14. Elliott G, O’Reilly D, O’Hare P. 1999. Identification of phosphorylation sites within the herpes simplex virus tegument protein vp22. J Virol 73(7): 6203–6206.

    PubMed  CAS  Google Scholar 

  15. Elliott G, Hafezi W, Whiteley A, et al. 2005. Deletion of the herpes simplex virus vp22-encoding gene (ul49) alters the expression, localization, and virion incorporation of icp0. J Virol, 79(15): 9735–9745.

    Article  PubMed  CAS  Google Scholar 

  16. Elliott G D, Meredith D M. 1992. The herpes simplex virus type 1 tegument protein vp22 is encoded by gene ul49. J Gen Virol, 73(Pt 3): 723–726.

    Article  PubMed  CAS  Google Scholar 

  17. Harms J S, Ren X, Oliveira S C, et al. 2000. Distinctions between bovine herpesvirus 1 and herpes simplex virus type 1 vp22 tegument protein subcellular associations. J Virol, 74(7): 3301–3312.

    Article  PubMed  CAS  Google Scholar 

  18. Heine J W, Honess R W, Cassai E, et al. 1974. Proteins specified by herpes simplex virus. Xii. The virion poly-peptides of type 1 strains. J Virol, 14(3): 640–651.

    PubMed  CAS  Google Scholar 

  19. Hutchinson I, Whiteley A, Browne H, et al. 2002. Sequential localization of two herpes simplex virus tegument proteins to punctate nuclear dots adjacent to icp0 domains. J Virol, 76(20): 10365–10373.

    Article  PubMed  CAS  Google Scholar 

  20. Kim T W, Hung C F, Kim J W, et al. 2004. Vaccination with a DNA vaccine encoding herpes simplex virus type 1 vp22 linked to antigen generates long-term antigen-specific cd8-positive memory t cells and protective immunity. Hum Gene Ther, 15(2): 167–177.

    Article  PubMed  CAS  Google Scholar 

  21. Kotsakis A, Pomeranz L E, Blouin A, et al. 2001. Microtubule reorganization during herpes simplex virus type 1 infection facilitates the nuclear localization of vp22, a major virion tegument protein. J Virol, 75(18): 8697–8711.

    Article  PubMed  CAS  Google Scholar 

  22. LaVail J H, Tauscher A N, Sucher A, et al. 2007. Viral regulation of the long distance axonal transport of herpes simplex virus nucleocapsid. Neuroscience, 146(3): 974–985.

    Article  PubMed  CAS  Google Scholar 

  23. Lee J H, Vittone V, Diefenbach E, et al. 2008. Identification of structural protein-protein interactions of herpes simplex virus type 1. Virology, 378(2): 347–354.

    Article  PubMed  CAS  Google Scholar 

  24. Lemken M L, Graepler F, Wolf C, et al. 2007. Fusion of hsv-1 vp22 to a bifunctional chimeric supercd suicide gene compensates for low suicide gene transduction efficiencies. Int J Oncol, 30(5): 1153–1161.

    PubMed  CAS  Google Scholar 

  25. Lemken M L, Wolf C, Wybranietz W A, et al. 2007. Evidence for intercellular trafficking of vp22 in living cells. Mol Ther, 15(2): 310–319.

    Article  PubMed  CAS  Google Scholar 

  26. Lopez M R, Schlegel E F, Wintersteller S, et al. 2008. The major tegument structural protein vp22 targets areas of dispersed nucleolin and marginalized chromatin during productive herpes simplex virus 1 infection. Virus Res, 136(1–2): 175–188.

    Article  PubMed  CAS  Google Scholar 

  27. Lundberg M, Johansson M. 2001. Is vp22 nuclear homing an artifact? Nat Biotechnol, 19(8): 713–714.

    Article  PubMed  CAS  Google Scholar 

  28. Martin A, O’Hare P, McLauchlan J, et al. 2002. Herpes simplex virus tegument protein vp22 contains overlapping domains for cytoplasmic localization, microtubule interaction, and chromatin binding. J Virol, 76(10): 4961–4970.

    Article  PubMed  CAS  Google Scholar 

  29. Mettenleiter T C. 2002. Herpesvirus assembly and egress. J Virol, 76(4): 1537–1547.

    Article  PubMed  CAS  Google Scholar 

  30. Miranda-Saksena M, Boadle R A, Armati P, et al. 2002. In rat dorsal root ganglion neurons, herpes simplex virus type 1 tegument forms in the cytoplasm of the cell body. J Virol, 76(19): 9934–9951.

    Article  PubMed  CAS  Google Scholar 

  31. Miyaji-Yamaguchi M, Okuwaki M, Nagata K. 1999. Coiled-coil structure-mediated dimerization of template activating factor-i is critical for its chromatin remodeling activity. J Mol Biol, 290(2): 547–557.

    Article  PubMed  CAS  Google Scholar 

  32. Mori T, Mineta Y, Aoyama Y, et al. 2008. Efficient secretion of the herpes simplex virus tegument protein vp22 from living mammalian cells. Arch Virol, 153(6): 1191–1195.

    Article  PubMed  CAS  Google Scholar 

  33. Mouzakitis G, McLauchlan J, Barreca C, et al. 2005. Characterization of vp22 in herpes simplex virus-infected cells. J Virol, 79(19): 12185–12198.

    Article  PubMed  CAS  Google Scholar 

  34. Murphy M A, Bucks M A, O’Regan K J, et al. 2008. The hsv-1 tegument protein pul46 associates with cellular membranes and viral capsids. Virology, 376(2): 279–289.

    Article  PubMed  CAS  Google Scholar 

  35. Perkins S D, Hartley M G, Lukaszewski R A, et al. 2005. Vp22 enhances antibody responses from DNA vaccines but not by intercellular spread. Vaccine, 23(16): 1931–1940.

    Article  PubMed  CAS  Google Scholar 

  36. Pomeranz L E, Blaho J A. 1999. Modified vp22 localizes to the cell nucleus during synchronized herpes simplex virus type 1 infection. J Virol, 73(8): 6769–6781.

    PubMed  CAS  Google Scholar 

  37. Pomeranz L E, Blaho J A. 2000. Assembly of infectious herpes simplex virus type 1 virions in the absence of full-length vp22. J Virol, 74(21): 10041–10054.

    Article  PubMed  CAS  Google Scholar 

  38. Posnett D N, Engelhorn M E, Lin Y, et al. 2009. Development of effective vaccines for old mice in a tumor model. Vaccine, 27(7): 1093–1100.

    Article  PubMed  CAS  Google Scholar 

  39. Potel C, Elliott G. 2005. Phosphorylation of the herpes simplex virus tegument protein vp22 has no effect on incorporation of vp22 into the virus but is involved in optimal expression and virion packaging of icp0. J Virol, 79(22): 14057–14068.

    Article  PubMed  CAS  Google Scholar 

  40. Rutjes S A, Bosma P J, Rohn J L, et al. 2003. Induction of insolubility by herpes simplex virus vp22 precludes intercellular trafficking of n-terminal apoptin-vp22 fusion proteins. J Mol Med, 81(9): 558–565.

    Article  PubMed  CAS  Google Scholar 

  41. Saha S, Yoshida S, Ohba K, et al. 2006. A fused gene of nucleoprotein (np) and herpes simplex virus genes (vp22) induces highly protective immunity against different subtypes of influenza virus. Virology, 354(1): 48–57.

    Article  PubMed  CAS  Google Scholar 

  42. Schwarze S R, Hruska K A, Dowdy S F. 2000. Protein transduction: Unrestricted delivery into all cells? Trends Cell Biol, 10(7): 290–295.

    Article  PubMed  CAS  Google Scholar 

  43. Sciortino M T, Taddeo B, Poon A P, et al. 2002. Of the three tegument proteins that package mrna in herpes simplex virions, one (vp22) transports the mrna to uninfected cells for expression prior to viral infection. Proc Natl Acad Sci U S A, 99(12): 8318–8323.

    Article  PubMed  CAS  Google Scholar 

  44. Sciortino M T, Taddeo B, Giuffre-Cuculletto M, et al. 2007. Replication-competent herpes simplex virus 1 isolates selected from cells transfected with a bacterial artificial chromosome DNA lacking only the ul49 gene vary with respect to the defect in the ul41 gene encoding host shutoff rnase. J Virol, 81(20): 10924–10932.

    Article  PubMed  CAS  Google Scholar 

  45. Sellers J R. 2000. Myosins: A diverse superfamily. Biochim Biophys Acta, 1496(1): 3–22.

    Article  PubMed  CAS  Google Scholar 

  46. Seo S B, McNamara P, Heo S, et al. 2001. Regulation of histone acetylation and transcription by inhat, a human cellular complex containing the set oncoprotein. Cell, 104(1): 119–130.

    Article  PubMed  CAS  Google Scholar 

  47. Stroh C, Held J, Samraj A K, et al. 2003. Specific inhibition of transcription factor nf-kappab through in-tracellular protein delivery of i kappabalpha by the herpes virus protein vp22. Oncogene, 22(34): 5367–5373.

    Article  PubMed  CAS  Google Scholar 

  48. Taddeo B, Sciortino M T, Zhang W, et al. 2007. Interaction of herpes simplex virus rnase with vp16 and vp22 is required for the accumulation of the protein but not for accumulation of mrna. Proc Natl Acad Sci USA, 104(29): 12163–12168.

    Article  PubMed  CAS  Google Scholar 

  49. van Leeuwen H, Elliott G, O’Hare P. 2002. Evidence of a role for nonmuscle myosin ii in herpes simplex virus type 1 egress. J Virol, 76(7): 3471–3481.

    Article  PubMed  Google Scholar 

  50. van Leeuwen H, Okuwaki M, Hong R, et al. 2003. Herpes simplex virus type 1 tegument protein vp22 interacts with taf-i proteins and inhibits nucleosome assembly but not regulation of histone acetylation by inhat. J Gen Virol, 84(Pt 9): 2501–2510.

    Article  PubMed  Google Scholar 

  51. Vittone V, Diefenbach E, Triffett D, et al. 2005. Determination of interactions between tegument proteins of herpes simplex virus type 1. J Virol, 79(15): 9566–9571.

    Article  PubMed  CAS  Google Scholar 

  52. Wybranietz W A, Prinz F, Spiegel M, et al. 1999. Quantification of vp22-gfp spread by direct fluorescence in 15 commonly used cell lines. J Gene Med, 1(4): 265–274.

    Article  PubMed  CAS  Google Scholar 

  53. Xiong F, Xiao S, Yu M, et al. 2007. Enhanced effect of microdystrophin gene transfection by hsv-vp22 mediated intercellular protein transport. BMC Neurosci, 8: 50.

    Article  PubMed  Google Scholar 

  54. Xiong F, Xiao S, Peng F, et al. 2007. Herpes simplex virus vp22 enhances adenovirus-mediated microdystrophin gene transfer to skeletal muscles in dystrophin-deficient (mdx) mice. Hum Gene Ther, 18(6): 490–501.

    Article  PubMed  CAS  Google Scholar 

  55. Yu X, Li W, Liu L, et al. 2008. Functional analysis of transcriptional regulation of herpes simplex virus type 1 tegument protein vp22. Sci China C Life Sci, 51(11): 966–972.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Y, Sirko D A, McKnight J L. 1991. Role of herpes simplex virus type 1 ul46 and ul47 in alpha tif-mediated transcriptional induction: Characterization of three viral deletion mutants. J Virol, 65(2): 829–841.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-fu Zheng.

Additional information

Foundation items: The Startup Fund of the Hundred Talents Program of the Chinese Academy of Science (20071010-141); National Natural Science Foundation of China (30870120); Open Research Fund Program of the State Key Laboratory of Virology of China (2007003, 2009007).

Equal contribution author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Ml., Guo, H., Ding, Q. et al. A multiple functional protein: the herpes simplex virus type 1 tegument protein VP22. Virol. Sin. 24, 153–161 (2009). https://doi.org/10.1007/s12250-009-3035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-009-3035-2

CLC number

Key words

Navigation