Skip to main content

Advertisement

Log in

Modeling the Formation of Debossed Features on a Pharmaceutical Tablet

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The objective of this work was to develop, validate, and implement a modeling methodology for predicting the shape and relative density fields in the vicinity of debossed features on a tablet surface. The resulting model was used to investigate the influence of debossed feature stroke angle and degree of pre-pick, which is expressed as a percentage of the stroke depth, as well as the influence of formulation lubricant on the aforementioned debossed feature parameters.

Methods

An experimental procedure for measuring formulation (modified) Drucker–Prager Cap parameters is described. These parameters are used in a finite element method simulation that models the formation of a debossed surface feature on a tablet. Techniques for validating the simulation and post-processing the results are also described.

Results

The stroke angle and degree of pre-pick significantly influence the debossed feature dimensions, with larger degrees of pre-pick and stroke angles giving debossed features that more closely match the target (embossment) values. Lubrication plays a much weaker role, but did improve the fidelity of the debossed feature slightly. The differences between the debossed and target feature dimensions are due to elastic spring back of the material. The tablet relative density is smallest at the shoulders of the debossed feature and largest at the base of the valley. Although the relative density fields show no obvious trends with stroke angle, the fields are clearly more uniform as the degree of pre-pick increases. The addition of lubricant to the formulation also improves the relative density field uniformity for larger degrees of pre-pick.

Conclusions

To improve feature fidelity and decrease the likelihood of damage, larger pre-picks, larger stroke angles, and the addition of a formulation lubricant should be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Manual of Policies and Procedures: Scoring Configuration of Generic Drug Products (5223.2). Center for Drug Evaluation and Research, Food and Drug Administration. May 2012. http://www.fda.gov/downloads/AboutFDA/ReportsManualsForms/StaffPoliciesandProcedures/ucm079779.pdf. Accessed 23rd June 2015.

  2. Guidance for Industry Tablet Scoring: Nomenclature, Labeling, and Data for Evaluation. Center for Drug Evaluation and Research, Food and Drug Administration. March 2013. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm269921.pdf. Accessed 23rd June 2015.

  3. McDermott TS, Farrenkopf J, Hlinak A, Neilly JP, Sauer D. A material sparing method for quantitatively measuring tablet sticking. Powder Technol. 2011;212(1):240–52.

    Article  CAS  Google Scholar 

  4. Waimer F, Krumme M, Danz P, Tenter U, Schmidt PC. The influence of engravings on the sticking of tablets. Investigations with an instrumented upper punch. Pharm Dev Technol. 1999;4(3):369–75.

    Article  CAS  PubMed  Google Scholar 

  5. Sabir A, Evans B, Jain S. Formulation and process optimization to eliminate picking from market image tablets. Int J Pharm. 2001;215(1-2):123–35.

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong N, Haines-Nutt R. Elastic recovery and surface area changes in compacted powder systems. Powder Technol. 1974;9(5-6):287–90.

    Article  Google Scholar 

  7. Davies PN, Worthington HEC, Podczeck F, Newton JM. The determination of the mechanical strength of tablets of different shapes. Eur J Pharm Biopharm. 2007;67(1):268–76.

    Article  CAS  PubMed  Google Scholar 

  8. American Pharmaceutical Association Tableting Specification Steering Committee. Tableting specification manual. 7th ed. APhA Publications; 2005.

  9. Pedersen M. Tablet tooling: design, maintenance and troubleshooting. Pharm Technol Eur. 1999;2:22–8.

    Google Scholar 

  10. Tsiftsoglou TB, Mendes RW. Effect of boron alloy coating of tableting tools. Pharm Technol. 1982;6:30–2.

    CAS  Google Scholar 

  11. Schumann S, Searle GD. The effect of chromium nitride ion bombardment treatment of tablet tooling on tablet adherence. Drug Dev Ind Pharm. 1992;18(10):1037–61.

    Article  CAS  Google Scholar 

  12. Roberts M, Ford JL, MacLeod GS, Fell JT, Smith GW, Rowe PH. Effects of surface roughness and chrome plating of punch tips on the sticking tendencies of model ibuprofen formulations. J Pharm Pharmacol. 2003;55(9):1223–8.

    Article  CAS  PubMed  Google Scholar 

  13. Waimer F, Krumme M, Danz P, Tenter U, Schmidt PC. A novel method for the detection of sticking of tablets. Pharm Dev Technol. 1999;4(3):359–67.

    Article  CAS  PubMed  Google Scholar 

  14. Mullarney, Matthew P, Bruce C, MacDonald, Allan H. Assessing tablet-sticking propensity. Pharm Technol. 2012;36(1):57–62.

    CAS  Google Scholar 

  15. Laity PR. Effects of punches with embossed features on compaction behaviour. Powder Technol. 2014;254:373–86.

    Article  CAS  Google Scholar 

  16. Helwany, S. Applied Soil Mechanics with ABAQUS Applications. 1st ed. Wiley; 2007.

  17. Michrafy A, Ringenbacher D, Tchoreloff P. Modelling the compaction behaviour of powders: application to pharmaceutical powders. Powder Technol. 2002;127(3):257–66.

    Article  CAS  Google Scholar 

  18. Sinka IC, Cunningham JC, Zavaliangos A. The effect of wall friction in the compaction of pharmaceutical tablets with curved faces: a validation study of the Drucker–Prager Cap model. Powder Technol. 2003;133(1):33–43.

    Article  CAS  Google Scholar 

  19. Cunningham JC, Sinka IC, Zavaliangos A. Analysis of tablet compaction. I. Characterization of mechanical behavior of powder and powder/tooling friction. J Pharm Sci. 2004;93(8):2022–39.

    Article  CAS  PubMed  Google Scholar 

  20. Djemai A, Sinka IC. NMR imaging of density distributions in tablets. Int J Pharm. 2006;319(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  21. Han LH, Elliott JA, Bentham AC, Mills A, Amidon GE, Hancock BC. A modified Drucker-Prager Cap model for die compaction simulation of pharmaceutical powders. Int J Solids Struct. 2008;45(10):3088–106.

    Article  Google Scholar 

  22. Sinha T, Bharadwaj R, Curtis JS, Hancock BC, Wassgren C. Finite element analysis of pharmaceutical tablet compaction using a density dependent material plasticity model. Powder Technol. 2010;202(1):46–54.

    Article  CAS  Google Scholar 

  23. Muliadi A, Litster JD, Wassgren C. Modeling the powder roll compaction process: comparison of 2-D finite element method and the rolling theory for granular solids (Johanson’s model). Powder Technol. 2012;221:90–100.

    Article  CAS  Google Scholar 

  24. Drucker DC. Limit analysis of two and three dimensional soil mechanics problems. J Mech Phys Solids. 1953;1(4):217–26.

    Article  Google Scholar 

  25. Schofield, Andrew, and Peter Wroth. Critical state soil mechanics. McGraw Hill; 1968.

  26. Green RJ. A plasticity theory for porous solids. Int J Mech Sci. 1972;14(4):215–24.

    Article  Google Scholar 

  27. DiMaggio FL, Ivan SS. Material model for granular soils. J Eng Mech. 1971;97(3):935–50.

    Google Scholar 

  28. Gurson AL. Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile media. J Eng Mater Technol. 1977;99(1):2–15.

    Article  Google Scholar 

  29. Kraft T, Riedel H. Numerical simulation of die compaction and sintering. Powder Metall. 2002;45(3):227–31.

    Article  CAS  Google Scholar 

  30. Brewin P.R., Coube O., Doremus P., and Tweed J.H. Modelling of powder die compaction. Springer Science and Business Media; 2007.

  31. Shang C, Sinka IC, Pan J. Constitutive model calibration for powder compaction using instrumented die testing. Exp Mech. 2012;52(7):903–16.

    Article  Google Scholar 

  32. Chen WF, Baladi GY. Soil plasticity: theory and implementation. New York: Elseveir; 1985.

    Google Scholar 

  33. Teunou E, Fitzpatrick J. Effect of relative humidity and temperature on food powder flowability. J Food Eng. 1999;42:109–16.

    Article  Google Scholar 

  34. Emery E, Oliver J, Pugsley T, Sharma J, Zhou J. Flowability of moist pharmaceutical powders. Powder Technol. 2009;189(3):409–15.

    Article  CAS  Google Scholar 

  35. Amidon GE, Houghton ME. The effect of moisture on the mechanical and powder flow properties of microcrystalline cellulose. Pharm Res. 1995;12:923–9.

    Article  CAS  PubMed  Google Scholar 

  36. Fitzpatrick JJ, Iqbal T, Delaney C, Twomey T, Keogh MK. Effect of powder properties and storage conditions on the flowability of milk powders with different fat contents. J Food Eng. 2004;64(4):435–44.

    Article  Google Scholar 

  37. Procopio A.T. On the Compaction of Granular Media Using a Multi-particle Finite Element Model. Ph.D. Thesis, Drexel University; 2006.

  38. Awaji H, Sato S. Diametral compressive testing method. J Eng Mater Technol. 1979;101(2):139–47.

    Article  Google Scholar 

  39. Busignies V, Leclerc B, Porion P, Evesque P, Couarraze G, Tchoreloff P. Quantitative measurements of localized density variations in cylindrical tablets using x-ray microtomography. Eur J Pharm Biopharm. 2006;64(1):38–50.

    Article  CAS  PubMed  Google Scholar 

  40. Sinka IC, Burch SF, Tweed JH, Cunningham JC. Measurement of density variations in tablets using x-ray computed tomography. Int J Pharm. 2004;271(1):215–24.

    Article  CAS  PubMed  Google Scholar 

  41. Dale S, Wassgren C, Litster J. Measuring granule phase volume distributions using x-ray microtomography. Powder Technol. 2014;264:550–60.

    Article  CAS  Google Scholar 

  42. Hancock BC, Colvin JT, Mullarney MP, Zinchuk AV. The relative densities of pharmaceutical powders, blends, dry granulations, and immediate-release tablets. Pharm Technol. 2003;27:64–80.

    CAS  Google Scholar 

  43. Zuurman K, Van der Voort Maarschalk K, Bolhuis GK. Effect of magnesium stearate on bonding and porosity expansion of tablets produced from materials with different consolidation properties. Int J Pharm. 1999;179(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  44. Wang J, Wen H, Desai D. Lubrication in tablet formulations. Eur J Pharm Biopharm. 2010;75(1):1–15.

    Article  PubMed  Google Scholar 

  45. Otsuka M, Yamane I, Matsuda Y. Effects of lubricant mixing on compression properties of various kinds of direct compression excipients and physical properties of the tablets. Adv Powder Technol. 2004;15(4):477–93.

    Article  Google Scholar 

  46. S. Likitlersuang On the The Influence Of Magnesium Stearate On Pharmaceutical Powder Consolidation. Ph.D. Thesis, University of Iowa; 2004

  47. Yu S, Adams M, Gururajan B, Reynolds G, Roberts R, Wu CY. The effects of lubrication on roll compaction, ribbon milling and tabletting. Chem Eng Sci. 2013;86:9–18.

    Article  CAS  Google Scholar 

  48. LaMarche K, Buckley D, Hartley R, Qian F, Badawy S. Assessing materials’ tablet compaction properties using the Drucker–Prager Cap model. Powder Technol. 2014;267:208–20.

    Article  CAS  Google Scholar 

  49. MathWorks. Image Processing Toolbox TM User’s Guide R2014b. Mathworks Pub; 2014.

  50. Martin CL. Elasticity, fracture and yielding of cold compacted metal powders. J Mech Phys Solids. 2004;52(8):1691–717.

    Article  CAS  Google Scholar 

  51. Briscoe BJ, Rough SL. The effects of wall friction in powder compaction. Colloids Surf A: Physicochemistry Eng Aspects. 1998;137(1-3):103–16.

    Article  CAS  Google Scholar 

  52. Dawes J, Gamble JF, Greenwood R, Robbins P, Tobyn M. An investigation into the impact of magnesium stearate on powder feeding during roller compaction. Drug Dev Ind Pharm. 2012;38(1):111–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Chuck Kettler and Bill Turner from Natoli Engineering for their helpful suggestions and for providing the tool used in the experimental studies. The authors would also like to thank Eli Lilly and Company for providing funding to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl Wassgren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, S., Hilden, J., Ramey, B. et al. Modeling the Formation of Debossed Features on a Pharmaceutical Tablet. J Pharm Innov 11, 214–230 (2016). https://doi.org/10.1007/s12247-016-9257-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-016-9257-6

Keywords

Navigation