Skip to main content
Log in

Preparation, Characterization, and In Vitro Evaluation of Ezetimibe Binary Solid Dispersions with Poloxamer 407 and PVP K30

  • Research Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Ezetimibe (EZE), a water insoluble drug, depicts variable bioavailability. The objective of the present investigation was to improve dissolution characteristics of EZE, which might offer improved bioavailability. The solid dispersions were prepared using poloxamer 407 (L 127) and polyvinyl pyrrolidone by melt and solvent method, respectively. Phase solubility studies indicated linear relationship between drug solubility and carrier concentration. In vitro release studies revealed improvement in the dissolution characteristics of EZE in solid dispersions. Solid dispersion with L 127 gave better rate and extent of dissolution. The best fit model indicating the probable mechanism of drug release from solid dispersions was found to be Korsemeyer–Peppas. The results of characterization of solid dispersions by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction revealed reduction in drug crystallinity which might be responsible for improved dissolution properties. The tablets of solid dispersion, containing L 127 prepared by direct compression, exhibited better drug release as compared to marketed formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

    Article  PubMed  CAS  Google Scholar 

  2. Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv. 2007;4(4):403–16.

    Article  PubMed  CAS  Google Scholar 

  3. Horter D, Dressman JB. Influence of physicochemical properties on dissolution of drug in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46:75–87.

    Article  PubMed  CAS  Google Scholar 

  4. Serajuddin ATM. Solid dispersions of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  PubMed  CAS  Google Scholar 

  5. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  PubMed  CAS  Google Scholar 

  6. Craig DQM. The mechanism of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002;231:131–44.

    Article  PubMed  CAS  Google Scholar 

  7. Kosoglou T, Statkevich P, Johnson-Levonas AO, Paolini JF, Bergman AJ, Alton KB. EZE: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet. 2005;44(5):467–94.

    Article  PubMed  CAS  Google Scholar 

  8. Lipka LJ. EZE: a first-in-class novel cholesterol absorption inhibitor. Cardiovasc Drug Rev. 2003;21(4):293–312.

    Article  PubMed  CAS  Google Scholar 

  9. Dixit RP, Nagasenker MS. Self-nanoemulsifying granules of EZE: design, optimization and evaluation. Eur J Pharm Sci. 2008;35:183–92.

    Article  PubMed  CAS  Google Scholar 

  10. Patel R, Bhimani D, Patel J, Patel D. Solid-state characterization and dissolution properties of EZE–cyclodextrins inclusion complexes. J Incl Phenom Macrocycl Chem. 2008;60:241–51.

    Article  CAS  Google Scholar 

  11. Pore YV, Sancheti PP, Karekar P, Vyas VM, Shah M. Preparation and physicochemical characterization of surfactant based solid dispersions of EZE. Pharmazie. 2009;64(4):227–31.

    PubMed  Google Scholar 

  12. Van den Mooter G, Augustijns P, Blaton N, Kinget R. Physico-chemical characterization of solid dispersions of temazepam with polyethylene glycol 6000 and PVP K30. Int J Pharm. 1998;164:67–80.

    Article  Google Scholar 

  13. El-Badry M, Fathy M. Enhancement of the dissolution and permeation rates of meloxicam by formation of its freeze-dried solid dispersions in polyvinylpyrrolidone K-30. Drug Dev Ind Pharm. 2006;32:141–50.

    Article  PubMed  CAS  Google Scholar 

  14. Shinde VR, Shelake MR, Shetty SS, Chavan-Patil AB, Pore VV, Late SG. Enhanced solubility and dissolution rate of lamotrigine by inclusion complexation and solid dispersion technique. J Pharm Pharmacol. 2008;60:1121–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ruan LP, Yu BY, Fu GM, Zhu DN. Improving the solubility of ampelopsin by solid dispersions and inclusion complexes. J Pharm Biomed Anal. 2005;38:457–64.

    Article  PubMed  CAS  Google Scholar 

  16. Ahuja N, Katare OP, Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm. 2007;65:26–38.

    Article  PubMed  CAS  Google Scholar 

  17. Yamamoto K, Chutimaworapan S, Ritthidej GC, Yonemochi E, Oguchi T. Effect of water soluble carriers on dissolution characteristics of nifedipine solid dispersions. Drug Dev Ind Pharm. 2000;26(11):1141–50.

    Article  PubMed  Google Scholar 

  18. Kalaiselvan R, Mohanta GP, Manna PK, Manavalan R. Studies on mechanism of enhanced dissolution of albendazole solid dispersions with crystalline carriers. Indian J Pharm Sci. 2006;68(5):599–607.

    Article  CAS  Google Scholar 

  19. Higuchi T, Connors KA. Phase solubility techniques. Adv Anal Chem Instrum. 1965;4:117–212.

    CAS  Google Scholar 

  20. USFDA, Available at http://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_SearchResults_Dissolutions.cfm, Accessed on December 16, 2008.

  21. Patel RP, Patel MM. Physicochemical characterization and dissolution study of solid dispersions of lovastatin with polyethylene glycol 4000 and polyvinylpyrrolidone K30. Pharm Dev Technol. 2007;12:21–33.

    Article  PubMed  CAS  Google Scholar 

  22. Devane J, Butler J, Dunne A, O’Hara T. A review of methods used to compare dissolution profile data. Pharm Sci Technol Today. 1998;1(5):214–23.

    Article  Google Scholar 

  23. Fernandes CM, Vieira MT, Veiga JB. Physicochemical characterization and in vitro dissolution behavior of nicardipine–cyclodextrins inclusion compounds. Eur J Pham Sci. 2002;15:79–88.

    Article  CAS  Google Scholar 

  24. Tantishaiyakul V, Kaewnoparrat N, Ingakatawornwong S. Properties of solid dispersions of piroxicam in polyvinypyrollidone-K30. Int J Pharm. 1996;143:59–66.

    Article  CAS  Google Scholar 

  25. Yamashita K, Nakate T, Okimoto K, Ohike A, Tokunaga Y, Ibuki R, et al. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm. 2003;267:79–91.

    Article  PubMed  CAS  Google Scholar 

  26. Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  PubMed  CAS  Google Scholar 

  27. Ali W, Williams AC, Rawlinson CF. Stochiometrically governed molecular interactions in drug: poloxamer solid dispersions. Int J Pharm. 2010;391:162–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mepro Pharmaceuticals Ltd. (Surendranagar, India) and BASF Ltd. (Mumbai, India) for providing EZE and L 127, respectively, as gift samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny R. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parmar, K.R., Shah, S.R. & Sheth, N.R. Preparation, Characterization, and In Vitro Evaluation of Ezetimibe Binary Solid Dispersions with Poloxamer 407 and PVP K30. J Pharm Innov 6, 107–114 (2011). https://doi.org/10.1007/s12247-011-9104-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-011-9104-8

Keywords

Navigation