Skip to main content
Log in

No-zero-entry full diversity space-time block codes with linear receivers

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

In MIMO systems, Toeplitz codes, overlapped Alamouti codes (OACs), and embedded Alamouti codes (EACs) can achieve full diversity when linear receivers are used. However, these codes have a large number of zero entries in their codeword matrix. Due to the zero entries in the design, the peak-to-average power ratio (PAPR) is high, and the transmitting antennas need to be switched on and off imposing severe hardware constrains. To solve this problem, in this paper, we propose a design scheme for no-zero-entry full diversity space-time block codes (NZE-STBCs). New no-zero-entry Toeplitz codes (called NZE-TCs) are designed first, and are then combined/overlaid with orthogonal space-time block code, Alamotui code, to construct no-zero-entry overlapped Alamouti codes (NZE-OACs) and no-zero-entry embedding Alamouti codes (NZE-EACs). The full diversity properties of proposed NZE-TCs, NZE-OACs, and NZE-EACs with linear receiver are derived. Simulation results show that our proposed codes outperform the Toeplitz codes, OACs, and EACs under peak power constraint, while performing the same under average power constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vucetic B, Yuan J-H (2003) Space–time coding. Wiley, Chichester

    Book  Google Scholar 

  2. Guey J-C, Fitz MP, Bell MR, Kuo W-Y (1999) Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels. IEEE Trans Commun 47(4):527–537

    Article  Google Scholar 

  3. Tarokh V, Seshadri N, Calderbank AR (1998) Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Trans Inf Theory 44(2):744–765

    Article  MATH  MathSciNet  Google Scholar 

  4. Alamouti SM (1998) A simple transmit diversity technique for wireless communications. IEEE J Sel Areas Commun 16(8):1451–1458

    Article  Google Scholar 

  5. Tarokh V, Jafarkhani H, Calderbank AR (1999) Space-time block codes from orthogonal designs. IEEE Trans Inf Theory 45(5):1456–1467

    Article  MATH  MathSciNet  Google Scholar 

  6. Ganesan G, Stoica P (2011) Space-time block codes: a maximum SNR approach. IEEE Trans Inf Theory 47(4):1650–1656

    Article  MathSciNet  Google Scholar 

  7. Wang H, Xia X-G (2003) Upper bounds of rates of complex orthogonal space-time block codes. IEEE Trans Inf Theory 49(10):2788–2796

    Article  MATH  MathSciNet  Google Scholar 

  8. Liang X-B (2003) Orthogonal designs with maximal rates. IEEE Trans Inf Theory 49(10):2468–2503

    Article  MATH  Google Scholar 

  9. Su W, Xia X-G, Liu KJR (2004) A systematic design of high-rate complex orthogonal space-time block codes. IEEE Commun Lett 8(6):380–382

    Article  Google Scholar 

  10. Lu K, Fu S, Xia X-G (2005) Closed-form designs of complex orthogonal space-time block codes of rates (k + 1)/2k for (2k-1) or 2k transmit antennas. IEEE Trans Inf Theory 51(12):4340–4347

    Article  MATH  MathSciNet  Google Scholar 

  11. Su W, Batalama SN, Pados DA (2006) On orthogonal space-time block codes and transceiver signal linearization. IEEE Commun Lett 10(2):91–93

    Article  Google Scholar 

  12. Jafarkhani H (2001) A quasi-orthogonal space-time block code. IEEE Trans Commun 49(1):1–4

    Article  MATH  Google Scholar 

  13. Tirkkonen O, Boariu A, Hottinen A (2000) Minimal non-orthogonality rate 1 space-time block code for 3-Tx antennas. Proc. IEEE Int. Symp. Spread Spectrum Tech. Appl. (ISSSTA’00), NJ, pp 429–432

  14. Papadias CB, Foschini GJ (2003) Capacity-approaching space-time codes for systems employing four transmitter antennas. IEEE Trans Inf Theory 49(3):726–732

    Article  MATH  MathSciNet  Google Scholar 

  15. Sharma N, Papadias CB (2003) Improved quasi-orthogonal codes through constellation rotation. IEEE Trans Commun 51(3):332–335

    Article  Google Scholar 

  16. Su W, Xia X-G (2004) Signal constellations for quasi-orthogonal space-time block codes with full diversity. IEEE Trans Inf Theory 50(10):2331–2347

    Article  MATH  MathSciNet  Google Scholar 

  17. Khan ZA, Rajan BS (2006) Single-symbol maximum likelihood decodable linear STBCs. IEEE Trans Inf Theory 52(5):2062–2091

    Article  MATH  MathSciNet  Google Scholar 

  18. Yuen C, Guan YL, Tjhung TT (2005) Quasi-orthogonal STBC with minimum decoding complexity. IEEE Trans Wirel Commun 4(5):2089–2094

    Article  Google Scholar 

  19. Wang H, Wang D, G-Xia X (2009) On optimal quasi-orthogonal space–time block codes with minimum decoding complexity. IEEE Trans Inf Theory 55(3):1104–1130

    Article  Google Scholar 

  20. Zhang J-K, Liu J, Wong KM (2005) Linear Toeplitz space time block codes. Proc. IEEE Int. Symp. Inf. Theory (ISIT’05), Adelaide, Australia. pp 1942–1946

  21. Liu J, Zhang J-K, Wong KM (2008) Full-diversity codes for MISO systems equipped with linear or ML detectors. IEEE Trans Inf Theory 54(10):4511–4527

    Article  MathSciNet  Google Scholar 

  22. Shang Y, Xia X-G (2008) Space-time block codes achieving full diversity with linear receivers. IEEE Trans Inf Theory 54(10):4528–4547

    Article  MathSciNet  Google Scholar 

  23. Zhang W, Yuan J (2009) A simple design of Space-time block codes achieving full diversity with linear receivers. Proc. Int. Conf. Acoustics, Speech and Signal Processing (ICASSP’09), Taipei, Taiwan, pp 2729–2732

  24. Wang H-M, Xia X-G, Yin Q-Y, Li B (2009) A family of space-time block codes achieving full diversity with linear receivers. IEEE Trans Wireless Commun 57(12):3607–3617

    Article  Google Scholar 

  25. Yuen C, Guan YL, Tjhung TT (2008) Power-balanced orthogonal space-time block code. IEEE Trans Veh Technol 57(5):3304–3309

    Article  Google Scholar 

  26. P Van Bien, W Sheng, X Ma, H Wang (2011) No-zero-entry STBC scheme of achieving full diversity with linear receiver. In: Proceeding of 2011 International Conference on Advanced Technologies for Communications (ATC 2011), DaNang, Vietnam, pp 212–215

  27. Dayal P, Varanasi MK (2005) Maximal diversity algebraic space-time codes with low peak-to-mean power ratio. IEEE Trans Inf Theory 51(5):1691–1708

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Bien Pham.

Appendixes

Appendixes

1.1 Appendix 1—Proof of Lemma 2

Firstly, we rewrite Toeplitz matrix \( \mathbf{\mathcal{T}}\left(\mathbf{v},\mathrm{L},\mathrm{K}\right) \) given in (5) as

$$ \mathbf{\mathcal{T}}\left(\boldsymbol{v},L,K\right)={\left[\begin{array}{ccc}\hfill {\boldsymbol{T}}_1\hfill & \hfill {\boldsymbol{T}}_2\hfill & \hfill {\boldsymbol{T}}_3\hfill \end{array}\right]}^T $$
(45)

where T 1 and T 3 are matrices of size (K-1) × L constructed by the K-1 first rows and the K-1 last rows of the Toeplitz matrix \( \mathbf{\mathcal{T}}\left(\boldsymbol{v},L,K\right) \), respectively, and T 2 is a matrix of size (L-K + 1) × L constructed by the remaining rows of \( \mathbf{\mathcal{T}}\left(\boldsymbol{v},L,K\right) \). Next, we rewrite NZE-Toeplitz matrix (10) as

(46)

where , 0 is the all-zero matrix of size (L-K + 1) × L. It is not difficult to check that

(47)

Hence, we have

(48)

The first inequality holds because \( {\mathbf{\mathcal{T}}}^{\mathrm{H}}\mathbf{\mathcal{T}} \) and 1 H 1 are positive semidefinite matrices, and the second inequality comes from the result in Lemma 1. This means inequality (10) holds. The proof for inequality (11) is similar.

1.2 Appendix 2—Proof of Theorem 2

Lemma 3

With F(v,M,L) given in (24) and G(v,M,L) in (26), we always have

$$ det\left({\boldsymbol{G}}^{\mathrm{H}}\left(\boldsymbol{v},M,L\right)\boldsymbol{G}\left(\boldsymbol{v},M,L\right)\right)\ge det\left({\boldsymbol{F}}^{\mathrm{H}}\left(\boldsymbol{v},M,L\right)\boldsymbol{F}\left(\boldsymbol{v},M,L\right)\right) $$
(49)

A proof of Lemma 3 is similar as that of Lemma 2.

By considering the equivalent channel matrix of the NZE-OAC in (28) and using Lemma 3, we have

(50)

On the other hand, Theorem 2 in [22] has shown that

$$ det\left({\boldsymbol{F}}^{\mathrm{H}}\left(\boldsymbol{h},M,L\right)\boldsymbol{F}\left(\boldsymbol{h},M,L\right)\right)\ge c{\left\Vert \boldsymbol{h}\right\Vert}^{2L} $$
(51)

with any nonzero h, and c is a positive constant independent of h.

From (50) and (51), we conclude that matrix H is nonsingular for any nonzero h. is the equivalent channel matrix of the NZE-OACs given in (28).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, VB., Sheng, WX. No-zero-entry full diversity space-time block codes with linear receivers. Ann. Telecommun. 70, 73–81 (2015). https://doi.org/10.1007/s12243-014-0429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-014-0429-4

Keywords

Navigation