Skip to main content
Log in

Syndrome trellis codes based on minimal span generator matrix

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

To improve the embedding efficiency of steganography, syndrome coding based on the coding theory has attracted many researchers’ attentions. In this paper, we make use of the relationship between syndrome coding for minimizing additive distortion and maximum likelihood decoding for linear codes to analyze the main parameters of convolutional codes which influence the embedding efficiency. And, the new syndrome trellis codes based on minimal span generator matrix is proposed. It can be considered an alternative construction of the state-of-the-art syndrome trellis codes (STCs) proposed by Filler and Fridrich recently. Experimental results show that the proposed scheme owns the same embedding performance to STCs and achieve the reduced time complexity and storage requirement meanwhile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Böhme R, Westfeld A (2005) Exploiting preserved statistics for steganalysis[C]//Information Hiding. Springer, Heidelberg, pp 359–379

    Google Scholar 

  2. Crandall R. Some notes on steganography[J]. Posted on steganography mailing list, 1998

  3. Westfeld A, Pfitzmann A. High capacity despite better steganalysis (F5—a steganographic algorithm)[C]//Information Hiding, 4th International Workshop. Pittsburgh, PA, 2001, 2137: 289–302

  4. van Dijk M, Willems F. (2001) Embedding information in grayscale images[C]//Proceedings of the 22nd Symposium on Information and Communication Theory in the Benelux, Enschede, The Netherlands. 147–154

  5. Zhang W, Wang S, Zhang X (2007) Improving embedding efficiency of covering codes for applications in steganography[J]. Communications Letters, IEEE 11(8):680–682

    Article  Google Scholar 

  6. Fridrich J, Soukal D (2006) Matrix embedding for large payloads[J]. Information Forensics and Security, IEEE Transactions on 1(3):390–395

    Article  Google Scholar 

  7. Schönfeld D, Winkler A (2006) Embedding with syndrome coding based on BCH codes[C]//Proceedings of the 8th workshop on Multimedia and security. ACM, 214–223

  8. Zhang R, Sachnev V, Kim H (2009) Fast BCH syndrome coding for steganography[C]//Information Hiding. Springer, Heidelberg, pp 48–58

    Google Scholar 

  9. Fontaine C, Galand F (2009) How Reed-Solomon codes can improve steganographic schemes[J]. EURASIP J Inf Secur 2009:1

    Article  Google Scholar 

  10. Zhang W, Li S (2008) A coding problem in steganography[J]. Designs, Codes and Cryptography 46(1):67–81

    Article  MathSciNet  Google Scholar 

  11. Fridrich J, Goljan M, Soukal D (2004) Perturbed quantization steganography with wet paper codes[C]//International Multimedia Conference: Proceedings of the 2004 workshop on Multimedia and security. 20(21): 4–15.

  12. Fridrich J, Goljan M, Lisonek P et al (2005) Writing on wet paper[J]. Signal Processing, IEEE Transactions on 53(10):3923–3935

    Article  MathSciNet  Google Scholar 

  13. Fridrich J, Filler T (2007) Practical methods for minimizing embedding impact in steganography[C]. Proceedings SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA 6505:02–03

    Google Scholar 

  14. Filler T, Fridrich J (2007) Binary quantization using belief propagation with decimation over factor graphs of LDGM codes[J]. arXiv preprint arXiv:0710.0192

  15. Filler T, Judas J, Fridrich J (2010) Minimizing embedding impact in steganography using trellis-coded quantization[J]. Proceedings of Media Forensics and Security III, SPIE 7451:715405–1

    Google Scholar 

  16. Filler T, Judas J, Fridrich J (2011) Minimizing additive distortion in steganography using syndrome-trellis codes[J]. Information Forensics and Security, IEEE Transactions on 6(3):920–935

    Article  Google Scholar 

  17. Pevný T, Filler T, Bas P (2010) Using high-dimensional image models to perform highly undetectable steganography[C]//Information Hiding. Springer, Heidelberg, pp 161–177

    Google Scholar 

  18. Sidorenko V, Zyablov V (1994) Decoding of convolutional codes using a syndrome trellis[J]. Information Theory, IEEE Transactions on 40(5):1663–1666

    Article  MATH  MathSciNet  Google Scholar 

  19. Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[J]. Information Theory, IEEE Transactions on 13(2):260–269

    Article  MATH  Google Scholar 

  20. Hole KJ (1998) A comparison of trellis modules for binary convolutional codes[J]. Communications, IEEE Transactions on 46(10):1245–1249

    Article  MATH  Google Scholar 

  21. McEliece RJ, Lin W (1996) The trellis complexity of convolutional codes[J]. Information Theory, IEEE Transactions on 42(6):1855–1864

    Article  MATH  MathSciNet  Google Scholar 

  22. McEliece RJ (1996) On the BCJR trellis for linear block codes[J]. Information Theory, IEEE Transactions on 42(4):1072–1092

    Article  MATH  MathSciNet  Google Scholar 

  23. Barron RJ, Chen B, Wornell GW (2003) The duality between information embedding and source coding with side information and some applications[J]. Information Theory, IEEE Transactions on 49(5):1159–1180

    Article  MATH  MathSciNet  Google Scholar 

  24. Viterbi A, Omura J (1974) Trellis encoding of memoryless discrete-time sources with a fidelity criterion[J]. Information Theory, IEEE Transactions on 20(3):325–332

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin S, Costello DJ (2004) Error control coding[M]. Englewood Cliffs, Prentice-Hall

    Google Scholar 

  26. Tang HH, Lin MC (2002) On (n, n-1) convolutional codes with low trellis complexity[J]. Communications, IEEE Transactions on 50(1):37–47

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by NSF of Jiangsu province (grant no. BK2010484), and NSF of China (grant nos. 61170250, 61103201, and 61272421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Liu, G. & Dai, Y. Syndrome trellis codes based on minimal span generator matrix. Ann. Telecommun. 69, 403–416 (2014). https://doi.org/10.1007/s12243-013-0386-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-013-0386-3

Keywords

Navigation