Skip to main content
Log in

Estimation of vehicle sideslip angle and tire-road friction coefficient based on magnetometer with GPS

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper presents a method that estimates the vehicle sideslip angle and a tire-road friction coefficient by combining measurements of a magnetometer, a global positioning system (GPS), and an inertial measurement unit (IMU). The estimation algorithm is based on a cascade structure consisting of a sensor fusing framework based on Kalman filters. Several signal conditioning techniques are used to mitigate issues related to different signal characteristics, such as latency and disturbances. The estimated sideslip angle information and a brush tire model are fused in a Kalman filter framework to estimate the tire-road friction coefficient. The performance and practical feasibility of the proposed approach were evaluated through several tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, C. (2011). Robust Estimation of Road Friction Coefficient for Vehicle Active Safety Systems. Ph. D. Dissertation. The University of Michigan. Ann Arbor, USA.

    Google Scholar 

  • Ahn, C., Peng, H. and Tseng, H. E. (2012). Robust estimation of road friction coefficient using lateral and longitudinal vehicle dynamics. Vehicle System Dynamics 50, 6, 961–985.

    Article  Google Scholar 

  • Ahn, C., Peng, H. and Tseng, H. E. (2013). Robust estimation of road frictional coefficient. IEEE Trans. Control Systems Technology 21, 1, 1–13.

    Article  Google Scholar 

  • Andersson, M., Bruzelius, F., Casselgren, J., Gäfvert, M., Hjort, M., Hultén, J., Håbring, F., Klomp, M., Olsson, G., Sjö dahl, M., Svendenius, J., Woxneryd, S. and Wälivaara, B. (2007). Road Friction Estimation. Intelligent Vehicle Safety Systems. 2004:17750.

    Google Scholar 

  • Best, M. C., Gordon, T. J. and Dixon, P. J. (2000). An extended adaptive Kalman filter for real-time state estimation of vehicle handling dynamics. Vehicle System Dynamics 34, 1, 57–75.

    Article  Google Scholar 

  • Bevly, D. M. (2004). Global positioning system (GPS): A low-cost velocity sensor for correcting inertial sensor errors on ground vehicles. J. Dynamic Systems, Measurement, and Control 126, 2, 255–264.

    Article  Google Scholar 

  • Bevly, D. M., Gerdes, J. C. and Wilson, C. (2002). The use of GPS based velocity measurements for measurement of sideslip and wheel slip. Vehicle System Dynamics 38, 2, 127–147.

    Google Scholar 

  • Canudas De Wit, C. and Tsiotras, P. (1999). Dynamic tire friction models for vehicle traction control. IEEE Int. Conf. Decision and Control, Phoenix, Arizona, USA, 3746–3751.

    Google Scholar 

  • Dugoff, H., Fancher, P. S. and Segel, L. (1969). Tire Performance Characteristics Affecting Vehicle Response to Steering and Braking Control Inputs. Highway Safety Research Institute. PB187-667.

    Google Scholar 

  • Eichhorn, U. and Roth, J. (1992). Prediction and monitoring of tyre/road friction. FISITA, London, UK, 67-74.

    Google Scholar 

  • Farrelly, J. and Wellstead, P. (1996). Estimation of vehicle lateral velocity. IEEE Int. Conf. Control Applications, Dearborn, MI, USA, 552–557.

    Google Scholar 

  • Grip, H. a. F., Imsland, L., Johansen, T. A., Fossen, T. I., Kalkkuhl, J. C. and Suissa, A. (2008). Nonlinear vehicle side-slip estimation with friction adaptation. Automatica 44, 3, 611–622.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafsson, F. (1997). Slip-based tire-road friction estimation. Automatica 33, 6, 1087–1099.

    Article  MathSciNet  MATH  Google Scholar 

  • Gustafsson, F. (1998). Monitoring tire-road friction using the wheel slip. IEEE Control Systems Magazine 18, 4, 42–49.

    Article  Google Scholar 

  • Hahn, J.-O., Rajamani, R. and Alexander, L. (2002). GPSbased real-time identification of tire-road friction coefficient. IEEE Trans. Control Systems Technology 10, 3, 331–343.

    Article  Google Scholar 

  • Holzmann, F., Bellino, M., Siegwart, R. and Bubb, H. (2006). Predictive estimation of the road-tire friction coefficient. IEEE Int. Conf. Control Applications, Munich, Germany, 885–890.

    Google Scholar 

  • Hsu, Y.-H. J. and Gerdes, J. C. (2006). A feel for the road: A method to estimate tire parameters using steering torque. Int. Symp. Advanced Vehicle Control, Taipei, Taiwan, 835–840.

    Google Scholar 

  • Hsu, Y.-H. J., Laws, S., Gadda, C. D. and Gerdes, J. C. (2006). A method to estimate the friction coefficient and tire slip angle using steering torque. Int. Mechanical Engineering Congress and Exposition, Chicago, IL, USA, 515–524

    Google Scholar 

  • Imsland, L., Johansen, T. A., Fossen, T. I., Fjær Grip, H., Kalkkuhl, J. C. and Suissa, A. (2006). Vehicle velocity estimation using nonlinear observers. Automatica 42, 12, 2091–2103.

    Article  MathSciNet  MATH  Google Scholar 

  • Ito, M., Yoshioka, K. and Saji, T. (1994). Estimation of road surface conditions using wheel speed behavior. Int. Symp. Advanced Vehicle Control, Tsukuba, Japan, 533–538.

    Google Scholar 

  • Larsen, T. D., Andersen, N. A., Ravn, O. and Poulsen, N. K. (1998). Incorporation of time delayed measurements in a discrete-time Kalman filter. Conf. Decision and Control, 4, 3972–3977.

    Google Scholar 

  • Lee, C., Hedrick, K. and Yi, K. (2004). Real time slip based estimation of maximum tire road friction coefficient. IEEE/ASME Trans. Mechatronics 9, 2, 454–458.

    Article  Google Scholar 

  • Liu, C.-S. and Peng, H. (1996). Road friction coefficient estimation for vehicle path prediction. Vehicle System Dynamics 25, 1, 413–425.

    Article  Google Scholar 

  • Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proc. National Institute of Sciences (Calcutta) 2, 1, 49–55.

    MathSciNet  MATH  Google Scholar 

  • Pacejka, H. B. (2005). Tyre and Vehicle Dynamics. Elsevier. Oxford, UK.

    MATH  Google Scholar 

  • Piyabongkarn, D., Rajamani, R., Grogg, J. A. and Lew, J. Y. (2009). Development and experimental evaluation of a slip angle estimator for vehicle stability control. IEEE Trans. Control Systems Technology 17, 1, 78–88.

    Article  Google Scholar 

  • Ray, L. R. (1997). Nonlinear tire force estimation and road friction identification: simulation and experiments. Automatica 33, 10, 1819–1833.

    Article  MathSciNet  MATH  Google Scholar 

  • Ryu, J. and Gerdes, J. C. (2004a). Estimation of vehicle roll and road bank angle. American Control Conf., Boston, MA,USA, 2110–2115.

    Google Scholar 

  • Ryu, J. and Gerdes, J. C. (2004b). Integrating inertial sensors with global positioning system (GPS) for vehicle dynamics control. J. Dynamic Systems, Measurement, and Control 126, 2, 243–254.

    Article  Google Scholar 

  • Sato, Y., Kobay, A. D., Kageyama, I., Watanabe, K., Kuriyagawa, Y. and Kuriyagawa, Y. (2007). Study on recognition method for road friction condition. JSAE Trans. 38, 2, 51–56.

    Google Scholar 

  • Stephant, J., Charara, A. and Meizel, D. (2004). Virtual sensor: Application to vehicle sideslip angle and transversal forces. IEEE Trans. Industrial Electronics 51, 2, 278–289.

    Article  Google Scholar 

  • Umeno, T., Ono, E., Asano, K., Ito, S., Tanaka, A., Yasui, Y. and Sawada, M. (2002). Estimation of tire-road friction using tire vibration model. SAE World Cong., Detroit, Michigan, USA.

    Google Scholar 

  • Yamada, M., Ueda, K., Horiba, I., Tsugawa, S. and Yamamoto, S. (2005). Road surface condition detection technique based on image taken by camera attached to vehicle rearview mirror. Review of Automotive Engineering 26, 2, 163–168.

    Google Scholar 

  • Yi, K., Hedrick, K. and Lee, S.-C. (1999). Estimation of tire-road friction using observer based identifiers. Vehicle System Dynamics 31, 4, 233–261.

    Article  Google Scholar 

  • Yoon, J.-H. and Peng, H. (2010). Vehicle sideslip angle estimation using two single-antenna GPS receivers. Dynamic Systems and Control Conf., Boston, MA, USA, 863–870.

    Google Scholar 

  • Yoon, J.-H. and Peng, H. (2014). Robust vehicle sideslip angle estimation through a disturbance rejection filter that integrates a magnetometer with GPS. IEEE Trans. Intelligent Transportation Systems 15, 1, 191–204.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, JH., Eben Li, S. & Ahn, C. Estimation of vehicle sideslip angle and tire-road friction coefficient based on magnetometer with GPS. Int.J Automot. Technol. 17, 427–435 (2016). https://doi.org/10.1007/s12239-016-0044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-016-0044-7

Key words

Navigation