Skip to main content
Log in

State estimation for motorized seat belt system using sliding-mode observer

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This paper describes a sliding-mode observer design for state estimation of a motorized seat belt (MSB) system. The MSB system is an active safety system that can protect passengers and improve passenger convenience by several operations, which prevent and warn to passengers about dangerous driving conditions and reduce the dangerous situation caused by slack and poor return of seat belt. To realize these operations, state information such as the belt winding velocity and tension of belt are required. However measuring this information with sensors increases the system cost and complexity. In this paper, a sliding-mode observer, which estimates requisite state information, is proposed. The designed sliding-mode observer is robust towards system uncertainties and parameter variation and is verified in matched and mismatched parameter cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • He, B., Ouyang, M. and Lu, L. (2006). Modeling and PI control of diesel APU for series hybrid electric vehicles. Int. J. Automotive Technology 7, 1, 91–100.

    Google Scholar 

  • Husain, I., Veillette, R. J. and Batur, C. (2003). Design and performance analysis of sliding-mode observers for sensorless operation of switched reluctance motors. IEEE Trans. Control Systems Technology 11, 3, 383–389.

    Article  Google Scholar 

  • Jin, H., Choi, S. and Kim, S. (2014), Design of a compressor-power-based exhaust manifold pressure estimator for diesel engine air management. Int. J. Automotive Technology 15, 2, 191–201.

    Article  Google Scholar 

  • Jin, S. and Lee, W. (2007). A study on the experimental parameter identification for electronic throttle body. KSAE Spring Conf., 4, 2245–2250.

    Google Scholar 

  • Jung, Y. and Kim, M. (2009). Sliding mode observer for sensorless control of IPMSM drives. J. Power Electronics 9, 1, 117–123.

    Google Scholar 

  • Kim, H., Heo, S. and Kang, G. (2008). Modeling and state observer design of HEV Li-ion battery. J. Power Electronics 13, 5, 360–368.

    Google Scholar 

  • Kim, S., Kim, I., Jeong, G., Ju, S., Kim, M. and Son, Y. (2009). Experiments for current estimation of a DC/DC boost converter using luenberger observer. KIEE Information and Control Symp., 385–386.

    Google Scholar 

  • Lee, J. H., Lee, H. J. and Sunwoo, M. (2014). Nonlinear sliding mode observer for exhaust manifold pressure estimation in a light-duty diesel engine. Int. J. Automotive Technology 15, 3, 377–386.

    Article  Google Scholar 

  • Lee, K., Choi, C. and Lee, W. (2013). Retraction control of motorized seat belt system with linear state observer. J. Central South University 20, 2, 385–392.

    Article  Google Scholar 

  • Lee, K., Choi, C. and Lee, W. (2012). A design of linear state observer for motorized seat belt system. Trans. KSAE 20, 3, 1–147.

    MATH  MathSciNet  Google Scholar 

  • Li, Z., Chen, J., Gan, M., Fang, H. and Zhang, G. (2010), Adaptive robust dynamic surface control of DC torque motors with true parameter estimates. American Control Conf., 3524–3529.

    Google Scholar 

  • Luenberger, D. (1971). An introduction to observers. IEEE Trans. Automatic Control, AC-16, 596–602.

    Article  Google Scholar 

  • Mallon, N., Wouw, N., Putra, D. and Nijmeijer, H. (2006). Friction compensation in a controlled one-link robot using a reduced-order observer. IEEE Trans. Control systems Technology 14, 2, 374–383.

    Article  Google Scholar 

  • Matsuo, T. and Lipo, T. A. (1985). A rotor parameter identification scheme for vector-controlled induction motor drives. IEEE Trans. Industry Applications IA-21, 3, 624–632.

    Article  Google Scholar 

  • Metni, N., Pflimlin, J., Hamel, T. and Soueres, P. (2006). Attitude and gyro bias estimation for a VTOL UAV. Control Engineering Practice 14, 12, 1511–1520.

    Article  Google Scholar 

  • Min, S., Lee, J. and Kim, B. (2004). Development of precresh safety system using motorized seat belt. KSAE Spring Conf., 4, 1219–1224.

    Google Scholar 

  • Mohan, N. (2001). Electric Drives: An Integrative Approach. Mnpere. Minneapolis.

    Google Scholar 

  • M’sirdi, N. K., Rabhi, A., Fridman, L., Davila, J. and Delanne, Y. (2006). Second order sliding mode observer for estimation of velocities, wheel sleep, radius and stiffness. American Control Conf. DOI: 10.1109/ACC.2006.1657230.

    Google Scholar 

  • Nollet, F., Floquet, T. and Perruquetti, W. (2008). Observerbased second order sliding mode control laws for stepper motors. Control Engineering Practice 16, 4, 429–443.

    Article  Google Scholar 

  • Pal, T., Shekhar, C. and Sharma, H. D. (2009). Design and development of embedded system on ARM for on-line characterization of DC motor. Advances in Computing, Control & Telecommunication Technologies Int. Conf., 502–506.

    Chapter  Google Scholar 

  • Park, J., Tak, T., Kim, I., Kuk, M., Kim, D., Sin, S., Kim, J., Lee, D. and Kim, S. (2006). Driving mechanism design of a motorized seatbelt retractor. KSME Conf., 2951–2956.

    Google Scholar 

  • Ren, Z., Gerland, P. and Kroll, A. (2011). A novel frictionidentification method using sliding-mode observer and its application to electro-mechanical Throttles. 18th IFAC World Cong., 18, 4803–4808.

    Google Scholar 

  • Roberts, J. (1978). Use of the butterworth low-pass filter for oceanographic data. J. Geophysical Research 83, C11, 5510–5514.

    Article  Google Scholar 

  • Sarptuk, S. (1987). On the stability of discrete-time sliding mode control systems. IEEE Trans. Automatic Control 32, 10, 930–932.

    Article  Google Scholar 

  • Tokoro, S., Moriizumi, K., Kawasaki, T., Nagao, T., Abe, K. and Fujita, K. (2004). Sensor fusion system for precrash safety system. IEEE Intelligent Vehicles Symp., 945–950.

    Google Scholar 

  • Utkin, V. (1993). Sliding mode control design principles and applications to electric drives. IEEE Trans. Industrial Electronics 40, 1, 23–36.

    Article  Google Scholar 

  • Utkin, V. (1977). Variable structure systems with sliding modes. IEEE Trans. Automatic Control 22, 2, 212–222.

    Article  MATH  MathSciNet  Google Scholar 

  • Wu, J., Tang, H., Li, S. and Zheng, S. (2007). Integrated control system design of active front wheel steering and four wheel torque to improve vehicle handling and stability. Int. J. Automotive Technology 8, 3, 299–308.

    MATH  Google Scholar 

  • Zhang, Y., Zhang, J., Shangguan, W. and Feng, Q. (2007). Modeling and parameter identification for a passive hydraulic mount. Int. J. Automotive Technology 8, 2, 233–241.

    MATH  Google Scholar 

  • Zhu, L. (2004). Real-time multiple parameter estimation for voltage controlled brushless DC motor actuators. American Control Conf., 3851–3856.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.S., Lee, W.T. State estimation for motorized seat belt system using sliding-mode observer. Int.J Automot. Technol. 16, 301–308 (2015). https://doi.org/10.1007/s12239-015-0032-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-015-0032-3

Key Words

Navigation