Skip to main content
Log in

Integrated control of brake pressure and rear-wheel steering to improve lateral stability with fuzzy logic

  • Published:
International Journal of Automotive Technology Aims and scope Submit manuscript

Abstract

This study introduces an integrated dynamic control with steering (IDCS) system to improve vehicle handling and stability under severe driving conditions. It integrates an active rear-wheel steering control system and a direct yawmoment control system with fuzzy logic. Direct yaw-moment control is achieved by modifying the optimal slip of the front outer wheel. An 8-degree-of-freedom vehicle model was used to evaluate the proposed IDCS for various road conditions and driving inputs. The results show that the yaw rate tracked the reference yaw rate and that the body slip angle was reduced when the IDCS was employed, thereby increasing the controllability and stability of the vehicle on slippery roads. The IDCS system reduced the deviation from the center line for a vehicle running on a split m road.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

distance from center of gravity to the front wheel = 1.203 m

A m :

area of master cylinder = pi×0.022 m2

b :

distance from center of gravity to the rear wheel = 1.217 m

B roll :

roll axis torsional damping = 2600 N rad/s

c af , c ar :

cornering stiffness of the front and rear tyres = 30000 N/rad

f r :

rolling resistance force (N)

F x :

tyre longitudinal force (N)

F z :

normal force (N)

h s :

distance from sprung mass centre of gravity (CG) to the roll axis = 0.2 m

I roll :

sprung mass moment of inertia about the roll axis = 489.9 kg m2

I w :

mass moment inertia of the wheel about the axis of rotation = 2.1 kg m2

I z :

vehicle moment of inertia about the z axis = 1627 kg m2

K roll :

roll axis torsional stiffness = 45000 N rad

m s :

vehicle sprung mass = 1160 kg

m total :

vehicle total mass = 1280 kg

P b :

brake fluid pressure (N/m2)

R b :

distance from the centre of the wheel to the brake path = 0.16 m

R w :

wheel radius = 0.3 m

t f , t r :

front and rear wheel distance = 1.33 m

α :

tyre slip angle (rad)

β :

vehicle body slip angle (rad)

δ :

steering angle (rad)

γ :

yaw angle (rad)

θ st :

steering wheel angle input (rad)

θ sw :

steering wheel angle (rad)

λ d :

desired slip = 0.2

λ s :

wheel slip

μ :

friction coefficient

φ :

roll angle (rad)

ω :

wheel velocity (rad/s)

References

  • Boada, M. J. L., Boada, B. L., Munoz, A. and Diaz, V. (2006). Integrated control of front-wheel steering and front braking forces on the basis of fuzzy logic. Proc. IMechE, Part D: J. Automobile Engineering, 220, 253–267.

    Article  Google Scholar 

  • Dugoff, H., Fancher, P. S. and Segel, L. (1970). An analysis of tire traction properties and their influence on vehicle dynamic performance. SAE Paper No. 700377.

  • He, J., Crolla, D. A., Levesley, M. C. and Manning, W. J. (2006). Coordination of active steering, driveline, and braking for integrated vehicle dynamics control. Proc. IMechE, Part D: J. Automobile Engineering, 220, 1401–1421.

    Article  Google Scholar 

  • Li, B. and Fan, Y. (2010). Design of a vehicle lateral stability control system via a fuzzy logic control approach. Proc. IMechE, Part D: J. Automobile Engineering 223,3, 313–326.

    Article  MathSciNet  Google Scholar 

  • Manning, W. J. and Crolla, D. A. (2007) A review of yaw rate and sideslip controllers for passenger vehicles. Trans. Institute of Measurement and Control 29,2, 117–135.

    Article  Google Scholar 

  • Mokhiamar, O. and Abe, M. (2002). Active wheel steering and yaw moment control combination to maximize stability as well as vehicle responsiveness during quick lane change for active vehicle handling safety. Proc. IMechE, Part D: J. Automobile Engineering, 216, 115–124.

    Article  Google Scholar 

  • Nagai, M., Shino, M. and Gao, F. (2002). Study on integrated control of active front steer angle and direct yaw moment. JSAE Review, 23, 309–315.

    Article  Google Scholar 

  • Nguyen, H. T., Prasad, N. R., Walker, C. L. and Walker, E. A. (2003). A First Course in Fuzzy and Neural Control. Chapman & Hall/CRC. New York.

    MATH  Google Scholar 

  • Shino, M., Raksincharoensak, P. and Nagai, M. (2002). Vehicle handling and stability control by integrated control of direct yaw moment and active steering. 6th Int. Symp. Advanced Vehicle Control, Proc. AVEC’02, Tokyo, Japan.

  • Song, J. (2009). Comparison and evaluation of steer yaw motion controllers with an anti-lock brake system. Proc. IMechE, Part D: J. Automobile Engineering 223,4, 503–518.

    Article  Google Scholar 

  • Song, J. and Che, W. S. (2008). Comparison and evaluation of brake yaw motion controllers with an antilock brake system. Proc. IMechE, Part D: J. Automobile Engineering 222,7, 1273–1288.

    Article  Google Scholar 

  • Song, J. and Che, W. S. (2009). Comparison between braking and steering yaw moment controllers considering ABS control aspects. Mechatronics 19,7, 1126–1133.

    Article  Google Scholar 

  • Wu, J. Y., Tang, H. J., Li, S. Y. and Zheng, S. B. (2007). Integrated control system design of an active front wheel steering and four wheel torque to improve vehicle handling and stability. Int. J. Automotive Technology 8,3, 299–308.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J. Integrated control of brake pressure and rear-wheel steering to improve lateral stability with fuzzy logic. Int.J Automot. Technol. 13, 563–570 (2012). https://doi.org/10.1007/s12239-012-0054-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12239-012-0054-z

Key Words

Navigation