Skip to main content

Advertisement

Log in

Statistical Detection of Spatio-Temporal Patterns in the Salinity Field Within an Inter-Tidal Basin

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Salinity is a key factor affecting biological processes and biodiversity in estuarine systems. This study investigates temporal and spatial changes in salinity at a basin-wide scale for 2005–2015 in the Dutch Wadden Sea. Scan statistics is applied to track salinity variations systematically and to detect potential clusters, i.e., estuarine regions marked by anomalous high-salinity (or low-salinity) values in a certain period (i.e., strong deviations from the expected value in a statistical sense). Clusters’ statistical significance has been assessed via Monte Carlo simulations. Particular attention is devoted to event-driven spatial and temporal patterns characterized by extreme salinity values since these episodes dramatically increase stress levels on organisms living in intertidal areas. Periodic components in the modeled salinity time series are identified using wavelet analysis and eventually removed from the signal before performing scan statistics. Wavelet analysis suggests that tides are the chief agent controlling salinity fluctuations in the system at within-day time scales, whereas no dominant periodicities were detected at longer time scales. Scan statistics reveal long-lasting clusters next to the main freshwater outlets and within the areas characterized by low water exchanges. In contrast, active regions of the estuary can efficiently counteract extreme events and quickly recover their pre-perturbation conditions. Finally, by analyzing the freshwater dispersal in the system, it is found that clusters’ occurrence is related to episodic events characterized by extreme conditions in the southwesterly wind and freshwater discharge. This research demonstrates that scan statistics can be used as a powerful tool for spatiotemporal analyses of marine systems and for identifying data-clustering that may be indicative of emerging environmental hazards (e.g., due to climate change).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Bruggeman, J., and K. Bolding. 2014. A general framework for aquatic biogeochemical models. Environmental Modelling and Software 61:249–265. https://doi.org/10.1016/j.envsoft.2014.04.002.

    Article  Google Scholar 

  • Burchard, H., and K. Bolding. 2002. GETM: a general estuarine transport model, Scientific documentation, Tech. Rep. EUR 20253 EN, Eur. Comm., Ispra, Italy.

  • Carniello, L., A. D’Alpaos, G. Botter, and A. Rinaldo. 2016. Statistical characterization of spatio temporal sediment dynamics in the Venice lagoon. Journal of Geophysical Research - Earth Surface 121:1049–1064. https://doi.org/10.1002/2015JF003793.

  • Carstensen, J. (2007). Statistical principles for ecological status classification of Water Framework Directive monitoring data. Marine Pollution Bulletin 55:3–15

  • Cloern, J.E. 1984. Temporal dynamics and ecological significance of salinity stratification in an estuary (South San Francisco Bay, USA). Oceanologica Acta 7: 137–141.

    Google Scholar 

  • Cramér, H., and M.R. Leadbetter. 1967. Stationary and Related Stochastic Processes, 348 pp., John Wiley, New York.

  • Doney, S.C., M. Ruckelshaus, J.E. Duffy, J.P. Barry, F. Chan, C.A. English, H.M. Galindo, J.M. Grebmeier, A.B. Hollowed, N. Knowlton, J. Polovina, N.N. Rabalais, W.J. Sydeman, and L.D. Talley. 2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4:11–37.

  • Duran-Matute, M., T. Gerkema, G.J. de Boer, J.J. Nauw, and U. Gräwe. 2014. Residual circulation and freshwater transport in the Dutch Wadden Sea: A numerical modelling study. Ocean Science 10 (4):611–632. https://doi.org/10.5194/os-10-611-2014.

    Article  Google Scholar 

  • Duran-Matute, M., T. Gerkema, and M.G. Sassi. 2016. Quantifying the residual volume transport through a multiple-inlet system in response to wind forcing: The case of the western Dutch Wadden Sea. J. Geophys. Res. Oceans 121: 8888–8903. https://doi.org/10.1002/2016JC011807.

    Article  Google Scholar 

  • D’Alpaos, A., L. Carniello, and A. Rinaldo. 2013. Statistical mechanics of wind wave-induced erosion in shallow tidal basins: Inferences from the Venice lagoon. Geophysical Research Letters 40:3402–3407. https://doi.org/10.1002/grl.50666.

    Article  Google Scholar 

  • Elias, E., A. Van der Spek, and Z. Wang. 2012. Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Netherlands Journal of Geosciences 91 (3):293–310.

    Article  Google Scholar 

  • Eslami, S., P. Hoekstra, N. Nguyen Trung, S. Ahmed Kantoush, D. van Binh,  D. Do Duc, T. Tran Quang, and M. van der Vegt. 2019. Tidal amplification and salt intrusion in the Mekong Delta driven by anthropogenic sediment starvation. Scientific Reports 9:18746.

  • Fraker, S.E., W.H. Woodall, and H.S. Burkom. 2008. A note on the Poisson likelihood ratio test statistic for Kulldorff’s scan methods. Communications in Statistics—theory and Methods 37(7): 998–1001.

  • Gerkema, T., and M. Duran-Matute. 2017. Interannual variability of mean sea level and its sensitivity to wind climate in an inter-tidal basin. Earth System Dynamics 8 (4): 1223–1235. https://doi.org/10.5194/esd-8-1223-2017.

    Article  Google Scholar 

  • Geyer, W.R. 1997. Influence of wind on dynamics and flushing of shallow estuaries. Estuarine, Coastal and Shelf Science 44: 713–722.

    Article  Google Scholar 

  • Ghezzo, M., A. Sarretta, M. Sigovini, S. Guerzoni, D. Tagliapietra, and G. Umgiesser. 2011. Modeling the inter-annual variability of salinity in the lagoon of Venice in relation to the water framework directive typologies. Ocean & Coastal Management. https://doi.org/10.1016/j.ocecoaman.2011.06.007.

    Article  Google Scholar 

  • Grinsted, A., J.C. Moore, and S. Jevrejeva. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics 11: 561–566.

    Article  Google Scholar 

  • Gräwe, U., G. Floser, T. Gerkema, M. Duran-Matute, T.H. Badewien, E. Schulz, and H. Burchard. 2016. A numerical model for the entire Wadden Sea: Skill assessment and analysis of hydrodynamics. Journal of Geophysical Research, Oceans 121: 5231–5251. https://doi.org/10.1002/2016JC011655.

    Article  Google Scholar 

  • Guerra-Chanis, G.E., M.A. Reyes-Merlo, M. Diez-Minguito, A. Valle-Levinson. 2019. Saltwater intrusion in a subtropical estuary.  Estuarine, Coastal and Shelf Science 217:28–36.

  • Kulldorff, M. 1997. A spatial scan statistic. Communications Statistic: Theory Methods 26: 1481–1496.

  • Kulldorff, M. 1999. An isotonic spatial scan statistic for geographical disease surveillance. Journal National Institution Public Health 48 (2): 94–101.

    Google Scholar 

  • Kulldorff, M. 1999b. Spatial scan statistics: Models, calculations and applications. In Scan Statistics and Applications, ed. Balakrishnan Glaz, 303–322. Boston: Birkhauser.

    Chapter  Google Scholar 

  • Kulldorff, M. 2001. Prospective time periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society, Series A 164 (1): 61–72.

    Article  Google Scholar 

  • Kulldorff, M., R. Heffernan, J. Hartman, R.M. Assuncao, and F. Mostashari. 2005. A space–time permutation scan statistic for the early detection of disease outbreaks. PLoS Medicine 2: 216–224.

    Article  Google Scholar 

  • Leadbetter, M.R. 1991. On a basis for “peaks over threshold” modeling. Statistics & Probability Letters 12: 357–362.

    Article  Google Scholar 

  • Liu, Y., X.S. Liang, and R.H. Weisberg. 2007. Rectification of the bias in the wavelet power spectrum. Journal of the Seismological Society of Japan 24:2093–2102. https://doi.org/10.1175/2007JTECHO511.1.

    Google Scholar 

  • Marcos, R.D.L.F., and C.D.L.F. Marcos. 2008. From star complexes to the field: Open cluster families. Astrophysical Journal 672: 342–351.

    Article  Google Scholar 

  • Matsoukis, C., L.O. Amoudry, L. Bricheno, et al. 2021. Investigation of spatial and temporal salinity distribution in a river dominated delta through idealized numerical modelling. Estuaries and Coastshttps://doi.org/10.1007/s12237-021-00898-2.

  • Meier, H.E.M. 2007. Modeling the pathways and ages of inflowing salt and freshwater in the Baltic Sea. Estuarine, Coastal and Shelf Science 74: 610–627.

    Article  Google Scholar 

  • Naus, J.I. 1965. The distribution of the size of the maximum cluster of points on a line. Journal of American Statistical Association 60:532–538.

    Article  Google Scholar 

  • Patil, G.P., and C. Taillie. 2004. Upper level set scan statistics for detecting arbitrarily shaped hotspots. Environmental and Ecological Statistics 11: 189–197.

    Article  Google Scholar 

  • Ridal, M., E. Olsson, P. Unden, K. Zimmermann, and A. Ohlsson. 2017. Deliverable D2.7 : HARMONIE reanalysis report of results and dataset. http://www.uerra.eu/component/dpattachments/?task=attachment.download&id=296.

  • Robertson, C., and T.A. Nelson. 2010. Review of software for space-time disease surveillance. International Journal of Health Geographics 9:16. https://doi.org/10.1186/1476-072X-9-16

  • Robertson, C., T.A. Nelson, Y.C. MacNab, A.B. Lawson, and A.B Lawson. 2010. Review of methods for space-time disease surveillance. Spatial and Spatio-temporal Epidemiology 1:105–116. https://doi.org/10.1016/j.sste.2009.12.001. PMID: 22749467

  • Sassi, M.G., T. Gerkema, M. Duran-Matute, and J.J. Nauw. 2015. Residual water transport in the Marsdiep tidal inlet inferred from observations and a numerical model. Journal of Marine Research 74 (1):21–42. https://doi.org/10.1357/002224016818377586.

    Article  Google Scholar 

  • Schumann, R., H. Baudler, Ä. Glass, K. Dümcke, and U. Karsten. 2006. Long-term observations on salinity dynamics in a tideless shallow coastal lagoon of the southern Baltic Sea coast and their biological relevance. Journal of Marine Systems 60: 330–344.

    Article  Google Scholar 

  • Tango, T., and K. Takahashi. 2005. A flexibly shaped spatial scan statistic for detecting clusters. International Journal of Health Geographics 4:1–15.

  • Telesh, I.V., and V.V. Khlebovich. 2010. Principal processes within the estuarine salinity gradient: A review. Marine Pollution Bulletin 61: 149–155.

    Article  CAS  Google Scholar 

  • Teixeira, H., F. Salas, A. Borja, J.M. Neto, and J.C. Marques. 2008. A benthic perspective in assessing the ecological status of estuaries: The case of the Mondego estuary (Portugal). Ecological Indicators 8:404–416.

    Article  Google Scholar 

  • Torrence, C., and G.P. Compo. 1998. A practical guide to wavelet analysis. Bulletin of the American Meteorological Society 79:61–78. https://doi.org/10.1175/1520-0477(1998)079,0061:APGTWA%3e2.0.CO;2.

    Article  Google Scholar 

  • Tuia, D., R. Lasaponara, L. Telesca, and M. Kanevski. 2008. Emergence of spatio-temporal patterns in forest-fire sequences. Physica a: Statistical Mechanics and Its Applications 387: 3271.

    Article  Google Scholar 

  • van de Kreeke, J., and R.L. Brouwer. 2017. Tidal Inlets: Hydrodynamics and morphodynamics. Cambridge University Press.

    Book  Google Scholar 

  • van Oldenborgh, G.J., R. Haarsma, H. de Vries, and M.R. Allen. 2015. Cold extremes in North America vs. mild weather in Europe: The winter 2013–14 in the context of a warming world. Bulletin of the American Meteorological Society 96:707–714. https://doi.org/10.1175/BAMS-D-14-00036.1.

    Article  Google Scholar 

  • van Oldenborgh, G.J. et al. 2019. Pathways and pitfalls in extreme event attribution EMS Annual Meeting Abstracts 15 EMS2018–476.

  • Verdelhos, T., J.C. Marques, and P. Anastácio. 2015. The impact of estuarine salinity changes on the bivalves Scrobicularia plana and Cerastoderma edule, illustrated by behavioral and mortality responses on a laboratory assay. Ecological Indicators 52:96–104.

    Article  Google Scholar 

  • Wetz, M.S., and Yoskowitz, D.W. (2013). An ‘extreme’ future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology. Marine Pollution Bulletin 69:7–18.

  • Wheatly, M.C. 1988. Interated responses to salinity function. American Zoologist 28:65–77.

    Article  Google Scholar 

  • Zhang, W.G., J.L. Wilkin, and R.J. Chant. 2009. Modeling the pathways and mean dynamics of river plume dispersal in the New York Bight. Journal of Physical Oceanography 39:1167–1183.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. David Ralston, the two anonymous Reviewers, and Dr. Alessandro Di Bucchianico (Department of Mathematics and Computer Science, Eindhoven University of Technology, the NL) for their useful comments and suggestions.

Funding

This study was supported by the NWO/ENW project: ‘The Dutch Wadden Sea as an event-driven system: long-term consequences for exchange (LOCO-EX)’. The work was supported by the North-German Supercomputing Alliance (HLRN). Data are available online (https://zenodo.org/search?page=1&size=20&q=carmine%20donatelli).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Donatelli.

Additional information

Communicated by David K. Ralston

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 172 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donatelli, C., Duran-Matute, M., Gräwe, U. et al. Statistical Detection of Spatio-Temporal Patterns in the Salinity Field Within an Inter-Tidal Basin. Estuaries and Coasts 45, 2345–2361 (2022). https://doi.org/10.1007/s12237-022-01089-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-022-01089-3

Keywords

Navigation