Skip to main content

Advertisement

Log in

Scaling up: Predicting the Impacts of Climate Change on Seagrass Ecosystems

  • Special Issue: Seagrasses Tribute to Susan Williams
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Since Susan Williams and I started our scientific careers in the mid-1970s, seagrass science has been transformed from a largely descriptive field to an increasingly quantitative and predictive endeavor that requires a mechanistic understanding of environmental influence on metabolic networks that control energy assimilation, growth, and reproduction. Although the potential impacts of environment on gene products are myriad, important phenotypic responses are often regulated by a few key points in metabolic networks where externally supplied resources or physiological substrates limit reaction kinetics. Environmental resources commonly limiting seagrass productivity, survival, and growth include light, temperature, and CO2 availability that control carbon assimilation and sucrose formation, and regulate stress responses to environmental change. Here I present a systems approach to quantify the responses of seagrasses to shifts in environmental factors that control fundamental physiological processes and whole plant performance in the context of a changing climate. This review shows that our ability to understand the past and predict the future trajectory of seagrass-based ecosystems can benefit from a mechanistic understanding of the responses of these remarkable plants to the simultaneous impacts of ocean acidification, climate warming, and eutrophication that are altering ecosystem function across the globe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Apostolaki, E.T., S. Vizzini, I.E. Hendriks, and Y.S. Olsen. 2014. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Marine Environmental Research 99: 9–15.

    CAS  Google Scholar 

  • Arnold, T., C. Mealey, H. Leahey, A.W. Miller, J.M. Hall-Spencer, M. Milazzo, and K. Maers. 2012. Ocean acidification and the loss of phenolic substances in marine plants. PLoS One 7: e35107.

    CAS  Google Scholar 

  • Barber, B.J., and P.J. Behrens. 1985. Effects of elevated temperature on seasonal in situ leaf productivity of Thalassia testudinum banks ex König and Syringodium filiforme Kützing. Aquatic Botany 22: 61–69.

    Google Scholar 

  • Batiuk, R., P. Bergstrom, M. Kemp, E. Koch, L. Murray, J. Stevenson, R. Bartleson, V. Carter, N. Rybicki, J. Landwehr, C. Gallegos, L. Karrh, M. Naylor, D. Wilcox, K. Moore, S. Ailstock, and M. Teichberg. 2000. Chesapeake Bay submerged aquatic vegetation water quality and habitat-based requirements and restoration targets: a second synthesis, 217. Annapolis: Chesapeake Bay Program Office.

    Google Scholar 

  • Beer, S. 1989. Photosynthesis and respiration of marine angiosperms. Aquatic Botany 34: 153–166.

    CAS  Google Scholar 

  • Beer, S., and E. Koch. 1996. Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments. Marine Ecology Progress Series 141: 199–204.

    Google Scholar 

  • Bornmann, L., and R. Mutz. 2015. Growth rates of modern science: a bibliometric analysis based on the number of publications and cited references. Journal of the Association for Information Science and Technology 66: 2215–2222.

    CAS  Google Scholar 

  • Borum, J. 1983. The quantitative role of macrophytes, epiphytes and phytoplankton under different nutrient conditions on Rosskilde Fjord, Denmark. Proc. Int. Symp. Aquat. Macrophytes, Nijmegen, 35–40.

  • Borum, J., O. Pedersen, T.M. Greve, T.A. Frankovich, J.C. Zieman, J.W. Fourqurean, and C.J. Madden. 2005. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93: 148–158.

    CAS  Google Scholar 

  • Box, G.E.P. 1979. Robustness in the strategy of scientific model building. In Robustness in statistics, ed. R.L. Launer and G.N. Wilkinson, 201–236. Academic press.

  • Brown, J., J. Gillooly, A. Allen, V. Savage, and G. West. 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.

    Google Scholar 

  • Bulthius, D.A. 1983. Effects of in situ light reduction on density and growth of the seagrass Heterozostera tasmanica (martens ex Aschers.) den Hartog in Western port, Victoria, Australia. Journal of Experimental Marine Biology and Ecology 67: 91–103.

    Google Scholar 

  • Burnell, O.W., S.D. Connell, A.D. Irving, J.R. Watling, and B.D. Russell. 2014. Contemporary reliance on bicarbonate acquisition predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world. Conservation Physiology 2: 1–11.

    Google Scholar 

  • Cai, W.-J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science 3: 123–145.

    Google Scholar 

  • Campbell, J., and J. Fourqurean. 2013. Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum. Marine Biology 160: 1465–1475.

    CAS  Google Scholar 

  • Celebi, B. 2016. Potential impacts of climate change on photochemistry of Zostera marina L., Ph.D. Dissertation, Old Dominion University Norfolk.

  • Coffer, M., B. Schaeffer, R. Zimmerman, V. Hill, J. Li, K. Islam, and P. Whitman. 2020. Performance across WorldView-2 and RapidEye for reproducible seagrass mapping. Remote Sensing of Environment In Press.

  • Coleman, F.C., and S.L. Williams. 2002. Overexploiting marine ecosystem engineers: potential consequences for biodiversity. Trends in Ecology & Evolution 17: 40–44.

    Google Scholar 

  • Cottingham, K., J. Lennon, and B. Brown. 2005. Knowing when to draw the line: designing more informative ecological experiments. Frontiers in Ecology and the Environment 3: 145–152.

    Google Scholar 

  • Cox, T.E., F. Gazeau, S. Alliouane, I.E. Hendriks, P. Mahacek, A. Le Fur, and J.P. Gattuso. 2016. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica. Biogeosciences 13: 2179–2194.

    Google Scholar 

  • Cummings, M., and R. Zimmerman. 2003. Light harvesting and the package effect in Thalassia testudinum Koenig and Zostera marina L.: optical constraints on photoacclimation. Aquatic Botany 75: 261–274.

    Google Scholar 

  • Dattolo, E., M. Ruocco, C. Brunet, M. Lorenti, C. Lauritano, D. D’Esposito, P. De Luca, R. Sanges, S. Mazzuca, and G. Procaccini. 2014. Response of the seagrass Posidonia oceanica to different light environments: insights from a combined molecular and photophysiological study. Marine Environmental Research 101: 225–236.

    CAS  Google Scholar 

  • Davey, P.A., M. Pernice, G. Sablok, A. Larkum, H.T. Lee, A. Golicz, D. Edwards, R. Dolferus, and P. Ralph. 2016. The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Functional & Integrative Genomics 16: 465–480.

    CAS  Google Scholar 

  • de los Santos, C.B., D. Krause-Jensen, T. Alcoverro, N. Marbà, C.M. Duarte, M.M. van Katwijk, M. Pérez, J. Romero, J.L. Sánchez-Lizaso, G. Roca, E. Jankowska, J.L. Pérez-Lloréns, J. Fournier, M. Montefalcone, G. Pergent, J.M. Ruiz, S. Cabaço, K. Cook, R.J. Wilkes, F.E. Moy, G.M.-R. Trayter, X.S. Arañó, D.J. de Jong, Y. Fernández-Torquemada, I. Auby, J.J. Vergara, and R. Santos. 2019. Recent trend reversal for declining European seagrass meadows. Nature Communications 10: 3356.

    Google Scholar 

  • del Barrio, P., N.K. Ganju, A.L. Aretxabaleta, M. Hayn, A. García, and R.W. Howarth. 2014. Modeling future scenarios of light attenuation and potential seagrass success in a eutrophic estuary. Estuarine, Coastal and Shelf Science 149: 13–23.

    Google Scholar 

  • den Hartog, C., and J. Kuo. 2006. Taxonomy and biogeography of seagrasses. In Seagrasses: biology, ecology and conservation, ed. A. Larkum, R. Orth, and C. Duarte, 1–23. Dordecht: Springer.

    Google Scholar 

  • Dennison, W.C. 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquatic Botany 27: 15–26.

    Google Scholar 

  • Dennison, W.C., and R.S. Alberte. 1982. Photosynthetic respones of Zostera marina L. (eelgrass) to in situ manipulations of light intensity. Oecologia 55: 137–144.

    Google Scholar 

  • Dierssen, H., and R. Zimmerman. 2003. Benthic ecology from space: seagrass net primary production across the Bahamas banks. Marine Ecology-Progress Series 1–15.

  • Doney, S., V. Fabry, R. Feeley, and J. Kleypas. 2009. Ocean acidification: the other CO2 problem. Annual Review of Marine Science 1: 169–192.

    Google Scholar 

  • Dore, J.E., R. Lukas, D.W. Sadler, M.J. Church, and D.M. Karl. 2009. Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences 106: 12235–12240.

    CAS  Google Scholar 

  • Duarte, C. 1991. Seagrass depth limits. Aquatic Botany 40: 363–377.

    Google Scholar 

  • Duarte, C. 1999. Seagrass ecology at the turn of the millennium: challenges for the new century. Aquatic Botany 65: 7–20.

    Google Scholar 

  • Duarte, C., I. Hendricks, T. Moore, Y. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J. Trotter, and M. McCulloch. 2013. Is ocean acidification an open-ocean syndrome? Understanding the drivers and impacts of pH variability in coastal ecosystems. Estuaries and Coasts 36: 221–236.

    CAS  Google Scholar 

  • Durako, M. 1993. Photosynthetic utilization of CO2(aq) and HCO3 in Thalassia testudinum (Hydrocharitacae). Marine Biology 115: 373–380.

    Google Scholar 

  • Egea, L.G., R. Jiménez-Ramos, J.J. Vergara, I. Hernández, and F.G. Brun. 2018. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Marine Pollution Bulletin 134: 14–26.

    Google Scholar 

  • Ehlers, A., B. Worm, and T. Reusch. 2008. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. Marine Ecology Progress Series 355: 1–7.

    Google Scholar 

  • Enríquez, S. 2005. Light absorption efficiency and the package effect in the leaves of the seagrass Thalassia testudinum. Marine Ecology Progress Series 289: 141–150.

    Google Scholar 

  • Evans, A.S., K.L. Webb, and P.A. Penhale. 1986. Photosynthetic temperature acclimation in two coexisting seagrasses, Zostera marina L. and Ruppia maritima L. Aquatic Botany 24: 185–197.

    Google Scholar 

  • Fourqurean, J.W., and J.C. Zieman. 1991. Photosynthesis, respiration and whole plant carbon budget of the seagrass Thalassia testudinum. Marine Ecology Progress Series 69: 161–170.

    Google Scholar 

  • Gallegos, C. 2001. Calculating optical water quality targets to restore and protect submersed aquatic vegetation: overcoming problems in partitioning the diffuse attenuation coefficient for photosynthetically active radiation. Estuaries 24: 381–397.

    CAS  Google Scholar 

  • Gattuso, J., W. Krirkwood, J. Barry, E. Cox, F. Gazeau, L. Hansson, I. Hendricks, D. Kline, P. Mahacek, S. Martin, P. McElhany, E. Peltzer, J. Reeve, D. Roberts, V. Saderne, K. Tait, S. Widdicombe, and P. Brewer. 2014. Free-ocean CO2 enrichment systems (FOCE): present status and future developments. Biogeosciences 11: 4057–4072.

    CAS  Google Scholar 

  • Goverde, M., A. Bazin, J.A. Shykoff, and A. Erhardt. 1999. Influence of leaf chemistry of Lotus corniculatus (Fabaceae) on larval development of Polyommatus icarus (Lepidoptera, Lycaenidae): effects of elevated CO2 and plant genotype. Functional Ecology 13: 801–810.

    Google Scholar 

  • Greening, H.S., L. Cross, and E. Sherwood. 2011. A multiscale approach to seagrass recovery in Tampa, Florida. Ecological Restoration 29: 82–93.

    Google Scholar 

  • Greening, H., A. Janicki, and E. Sherwood. 2016. Seagrass recovery in Tampa Bay, Florida (USA). In The wetlands book, ed. C. Finlayson, G. Milton, R. Prentice, and N. Davidson, 1–12. Dortrecht: Springer.

    Google Scholar 

  • Gu, J., K. Weber, E. Klemp, G. Winters, S. Franssen, I. Wienphal, A. Huylmans, K. Zecher, T. Reusch, E. Bornberg-Bauer, and A. Weber. 2012. Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to system robustness. Integrative Biology 4: 480–493.

    CAS  Google Scholar 

  • Guerrero-Meseguer, L., T. Cox, C. Sanz-Lázaro, S. Schmid, L. Enzor, K. Major, F. Gazeau, and J. Cebrian. 2020. Does ocean acidification benefit seagrasses in a mesohaline environment? A mesocosm experiment in the northern Gulf of Mexico. Estuaries and Coasts 43: 1377–1393.

    CAS  Google Scholar 

  • Hall, M.O., B.T. Furman, M. Merello, and M.J. Durako. 2016. Recurrence of Thalassia testudinum seagrass die-off in Florida Bay, USA: initial observations. Marine Ecology Progress Series 560: 243–249.

    Google Scholar 

  • Hall-Spencer, J., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S. Turner, S. Rowley, D. Tedesco, and M.-C. Buia. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454: 96–99.

    CAS  Google Scholar 

  • Harley, C.D.G., A. Randall Hughes, K.M. Hultgren, B.G. Miner, C.J.B. Sorte, C.S. Thornber, L.F. Rodriguez, L. Tomanek, and S.L. Williams. 2006. The impacts of climate change in coastal marine systems. Ecology Letters 9: 228–241.

    Google Scholar 

  • Heck, K.L., T.J.B. Carruthers, C.M. Duarte, A.R. Hughes, G. Kendrick, R.J. Orth, and S.W. Williams. 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11: 1198–1210.

    Google Scholar 

  • Hemminga, M., and C. Duarte. 2000. Seagrass ecology. Cambridge University Press.

  • Herzka, S., and K. Dunton. 1997. Seasonal photosynthetic patterns in the seagrass Thalassia testudinum in the western Gulf of Mexico. Marine Ecology Progress Series 152: 103–117.

    Google Scholar 

  • Hill, V.J., R.C. Zimmerman, W.P. Bissett, H. Dierssen, and D.D. Kohler. 2014. Evaluating light availability, seagrass biomass, and productivity using hyperspectral airborne remote sensing in Saint Joseph’s Bay, Florida. Estuaries and Coasts 37: 1467–1489.

    CAS  Google Scholar 

  • Hu, X., D. Burdige, and R. Zimmerman. 2012. δ13C is a signature of light availability and photosynthesis in seagrass. Limnology and Oceanography 57: 441–448.

    CAS  Google Scholar 

  • Hughes, A.R., K.J. Bando, F.R. Laura, and L.W. Susan. 2004. Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach. Marine Ecology Progress Series 282: 87–99.

    Google Scholar 

  • Hughes, T.P., J.T. Kerry, M. Álvarez-Noriega, J.G. Álvarez-Romero, K.D. Anderson, A.H. Baird, R.C. Babcock, M. Beger, D.R. Bellwood, R. Berkelmans, T.C. Bridge, I.R. Butler, M. Byrne, N.E. Cantin, S. Comeau, S.R. Connolly, G.S. Cumming, S.J. Dalton, G. Diaz-Pulido, C.M. Eakin, W.F. Figueira, J.P. Gilmour, H.B. Harrison, S.F. Heron, A.S. Hoey, J.-P.A. Hobbs, M.O. Hoogenboom, E.V. Kennedy, C.-y. Kuo, J.M. Lough, R.J. Lowe, G. Liu, M.T. McCulloch, H.A. Malcolm, M.J. McWilliam, J.M. Pandolfi, R.J. Pears, M.S. Pratchett, V. Schoepf, T. Simpson, W.J. Skirving, B. Sommer, G. Torda, D.R. Wachenfeld, B.L. Willis, and S.K. Wilson. 2017. Global warming and recurrent mass bleaching of corals. Nature 543: 373.

    CAS  Google Scholar 

  • Invers, O., R. Zimmerman, R. Alberte, M. Perez, and J. Romero. 2001. Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation for bicarbonate use in temperate species. Journal of Experimental Marine Biology and Ecology 265: 203–217.

    CAS  Google Scholar 

  • IPCC. 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In , ed. R.K.P.a.L.A. Meyer, vol. 151. Geneva, Switzerland: IPCC.

  • Jiang, Z., X. Huang, and J. Zhang. 2010. Effects of CO2 enrichment on photosynthesis, growth and biochemical composition of seagrass Thalassia hemprechii (Ehrenb.) Aschers. Journal of Integrative Plant Biology 52: 904–913.

    CAS  Google Scholar 

  • Kellogg, M., M. Brush, and J. Cornell. 2018. An updated model for estimating the TMDL-related benefits of oyster reef restoration Harris Creek, Maryland, USA. Virginia Institute of Marine Science, College of William and Mary. https://doi.org/10.25773/7a75-ds48.

  • Kendrick, G.A., B.J. Hegge, A. Wyllie, A. Davidson, and D.A. Lord. 2000. Changes in seagrass cover on success and Parmelia banks, Western Australia between 1965 and 1995. Estuarine, Coastal and Shelf Science 50: 341–353.

    Google Scholar 

  • Kovacs, E., C. Roelfsema, M. Lyons, S. Zhao, and S. Phinn. 2018. Seagrass habitat mapping: how do Landsat 8 OLI, Sentinel-2, ZY-3A, and Worldview-3 perform? Remote Sensing Letters 9: 686–695.

    Google Scholar 

  • Koweek, D.A., R.C. Zimmerman, K.M. Hewett, B. Gaylord, S.N. Giddings, K.J. Nickols, J.L. Ruesink, J.J. Stachowicz, Y. Takeshita, and K. Caldeira. 2018. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecological Applications 28: 1694–1714.

    Google Scholar 

  • Kraemer, G.P., and R.S. Alberte. 1993. Age-related patterns of metabolism and biomass in subterranean tissues of Zostera marina L. (eelgrass). Marine Ecology Progress Series 95: 193–203.

    Google Scholar 

  • Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13: 1419–1434.

    Google Scholar 

  • Kroeker, K.J., F. Micheli, M.C. Gambi, and T.R. Martz. 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences 108: 14515–14520.

    CAS  Google Scholar 

  • Lapointe, B.E., L.W. Herren, R.A. Brewton, and P.K. Alderman. 2020. Nutrient over-enrichment and light limitation of seagrass communities in the Indian River Lagoon, an urbanized subtropical estuary. Science of the Total Environment 699: 134068.

    CAS  Google Scholar 

  • Larkum, A., R. Orth, and C. Duarte. 2006. Seagrasses: biology, ecology and conservation, 691. Dordrecht: Springer.

    Google Scholar 

  • Larkum, A., G. Kendrick, and P. Ralph. 2018. Seagrasses of Australia. Structure, ecology and conservation, 800. Cham, Switzerland: Springer.

    Google Scholar 

  • Lau, N.-C., and M.J. Nath. 2012. A model study of heat waves over North America: meteorological aspects and projections for the twenty-first century. Journal of Climate 25: 4761–4784.

    Google Scholar 

  • Leakey, A.D.B., E.A. Ainsworth, C.J. Bernacchi, A. Rogers, S.P. Long, and D.R. Ort. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. Journal of Experimental Botany 60: 2859–2876.

    CAS  Google Scholar 

  • Lee, Z.-P., K. Du, and R. Arnone. 2005. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research 110: 1–10.

    Google Scholar 

  • Lefcheck, J.S., R.J. Orth, W.C. Dennison, D.J. Wilcox, R.R. Murphy, J. Keisman, C. Gurbisz, M. Hannam, J.B. Landry, K.A. Moore, C.J. Patrick, J. Testa, D.E. Weller, and R.A. Batiuk. 2018. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proceedings of the National Academy of Sciences 115: 3658–3662.

    Google Scholar 

  • Lewis, E. 1980. The practical salinity scale 1978 and its antecedents. IEEE Journal of Oceanic Engineering OE-5: 3–8.

    CAS  Google Scholar 

  • Liu, P.-J., S.-J. Ang, A.B. Mayfield, and H.-J. Lin. 2020. Influence of the seagrass Thalassia hemprichii on coral reef mesocosms exposed to ocean acidification and experimentally elevated temperatures. Science of the Total Environment 700: 134464.

    CAS  Google Scholar 

  • Lodge, D.M., S. Williams, H.J. MacIsaac, K.R. Hayes, B. Leung, S. Reichard, R.N. Mack, P.B. Moyle, M. Smith, D.A. Andow, J.T. Carlton, and A. McMichael. 2006. Biological invasions: recommendations for U.S. policy and management. Ecological Applications 16: 2035–2054.

    Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.

    CAS  Google Scholar 

  • McPherson, M.L., R.C. Zimmerman, and V.J. Hill. 2015. Predicting carbon isotope discrimination in eelgrass (Zostera marina L.) from the environmental parameters—light, flow, and [DIC]. Limnology and Oceanography 60: 1875–1889.

    Google Scholar 

  • McRoy, C., and C. Hellfrich. 1977. Seagrass ecosystems: a scientific perspective. New York: Marcel Delkker.

    Google Scholar 

  • Moore, K., and J. Jarvis. 2008. Environmental factors affecting summertime eelgrass diebacks in the lower Chesapeake Bay: implications for long-term persistence. Journal of Coastal Research 55: 135–147.

    Google Scholar 

  • Moore, K., E. Shields, D. Parrish, and R. Orth. 2012. Eelgrass survival in two contrasting systems: role of turbidity and summer water temperatures. Marine Ecology Progress Series 448: 247–258.

    Google Scholar 

  • Najjar, R., M. Hermann, R. Alexander, E. Boyer, D. Burdige, D. Butman, W. Cai, E. Canuel, R. Chen, A. Friedrichs, R. Feagin, P. Griffith, A. Hinson, J. Holmquist, X. Hu, W. Kemp, K. Kroeger, A. Mannino, S. McCallister, W. McGillis, M. Mulholland, C. Pilskan, J. Salisbury, S. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahoss, Z. Wang, and R. Zimmerman. 2018. Carbon budget of tidal wetlands, estuaries and shelf waters of Eastern North America. Global Biogeochemical Cycles 32: 389–416.

    CAS  Google Scholar 

  • Odum, H. 1994. Ecological and general systems. Niowat: University Press of Coloroado.

    Google Scholar 

  • Odum, H. 2007. Environment, power and society for the twenty first century. The hierarchy of energy. New York: Columbia University Press.

    Google Scholar 

  • Olesen, B., D. Krause-Jensen, and P.B. Christensen. 2016. Depth-related changes in reproductive strategy of a cold-temperate Zostera marina meadow. Estuaries and Coasts 1–11.

  • Onuf, C. 1991. Light requirements for Halodule wrightii, Syringodium filiforme, and Halophila englemanni in a heterogeneous and variable environment inferred from long-term monitoring. In The light requirements of seagrasses. Results and recommendations of a workshop. NOAA Tech. Memo. NMFS-SEFC-287, ed. J. Kenworthy and D. Haunert, 95–105. Beaufort.

  • Orth, R., T. Carruthers, W. Dennison, C. Duarte, J. Fourqurean, K. Heck, A. Hughes, G. Kendrick, W. Kenworthy, S. Olyarnik, F. Short, M. Waycott, and S. Williams. 2006. A global crisis for seagrass ecosystems. BioScience 56: 987–996.

    Google Scholar 

  • Ow, Y.X., C.J. Collier, and S. Uthicke. 2015. Responses of three tropical seagrass species to CO2 enrichment. Marine Biology 162: 1005–1017.

    CAS  Google Scholar 

  • Ow, Y.X., S. Uthicke, and C.J. Collier. 2016. Light levels affect carbon utilisation in tropical seagrass under ocean acidification. PLoS One 11: e0150352.

    Google Scholar 

  • Palacios, S., and R. Zimmerman. 2007. Response of eelgrass (Zostera marina L.) to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Marine Ecology Progress Series 344: 1–13.

    Google Scholar 

  • Pfannschmidt, T., and C. Yang. 2012. The hidden function of photosynthesis: a sensing system for environmental conditions that regulates plant acclimation responses. Protoplasma 249: 125–135.

    CAS  Google Scholar 

  • Phillips, R., and C. McRoy. 1980. Handbook of seagrass biology: an ecosystem perspective, xiii + 353 p. New York: Garland STPM Press.

    Google Scholar 

  • Plus, M., J.-M. Deslous-Paoli, and F. Dagault. 2003. Seagrass (Zostera marina L.) bed recolonisation after anoxia-induced full mortality. Aquatic Botany 77: 121–134.

    Google Scholar 

  • Procaccini, G., S. Beer, M. Björk, J. Olsen, S. Mazzuca, and R. Santos. 2012. Seagrass ecophysiology meets ecological genomics: Are we ready? Marine Ecology 33: 522–527.

    Google Scholar 

  • Rask, N., M.B. Rasmussen, and J.S. Laursen. 2000. Ålegræs - udbredelse før og nu. Vand and Miljø 7: 51–54.

    Google Scholar 

  • Raven, J.A., and J. Beardall. 2014. CO2 concentrating mechanisms and environmental change. Aquatic Botany 118: 24–37.

    CAS  Google Scholar 

  • Raven, J.A., D.I. Walker, A.M. Johnston, L.L. Handley, and J. Kubler. 1995. Implications of 13C natural abundance measurements for photosynthetic performance by marine macrophytes in their natural environment. Marine Ecology Progress Series 123: 193–205.

    Google Scholar 

  • Ruesink, J., S. Yang, and A. Trimble. 2015. Variability in carbon availability and eelgrass (Zostera marina) biometrics along an estuarine gradient in Willapa Bay, WA, USA. Estuaries and Coasts 38: 1908–1917.

    CAS  Google Scholar 

  • Ruocco, M., F. Musacchia, I. Olivé, M.M. Costa, I. Barrote, R. Santos, R. Sanges, G. Procaccini, and J. Silva. 2017. Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification. Molecular Ecology 26: 4241–4259.

    CAS  Google Scholar 

  • Saba, G., K. Goldsmith, S. Cooley, D. Grosse, S. Meseck, W. Miller, M. Poach, B. Phelan, R. Rheault, K.St. Laurent, J. Testa, J. Weis, and R. Zimmerman. 2019. Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. mid-Atlantic. Estuarine, Coastal and Shelf Science 225: 1–15.

    Google Scholar 

  • Saito, M.A., T. Goepfert, and J. Ritt. 2008. Some thoughts on the concept of colimitation: Three definitions and the importance of bioavailability. Limnology and Oceanography 53: 276–290.

    CAS  Google Scholar 

  • Salo, T., T.B.H. Reusch, and C. Boström. 2015. Genotype-specific responses to light stress in eelgrass Zostera marina, a marine foundation plant. Marine Ecology Progress Series 519: 129–140.

    CAS  Google Scholar 

  • Sand-Jensen, K., and D.M. Gordon. 1984. Differential ability of marine and freshwater macrophytes to utilize HCO3 and CO2. Marine Biology 80: 247–253.

    CAS  Google Scholar 

  • Schulte, D.M., R.P. Burke, and R.N. Lipcius. 2009. Unprecedented restoration of a native oyster metapopulation. Science 325: 1124–1128.

    CAS  Google Scholar 

  • Seddon, S., R.M. Connolly, and K.S. Edyvane. 2000. Large-scale seagrass dieback in northern Spencer Gulf, South Australia. Aquatic Botany 66: 297–310.

    Google Scholar 

  • Sherwood, E., H. Greening, J. Johansson, K. Kaufman, and G. Raulerson. 2017. Tampa Bay (Florida, USA). Documenting seagrass recovery sonce the 1980’s and reviewing the benefits. Southeastern Geographer 57: 294–319.

    Google Scholar 

  • Short, F., and R. Coles. 2001. Global seagrass research methods. Amsterdam: Elsevier.

    Google Scholar 

  • Short, F.T., S. Kosten, P.A. Morgan, S. Malone, and G.E. Moore. 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany 135: 3–17.

    Google Scholar 

  • Spivack, A., C. You, and H. Smith. 1993. Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 My. Nature 363: 149–151.

    CAS  Google Scholar 

  • Takahashi, M., S.H.C. Noonan, K.E. Fabricius, and C.J. Collier. 2016. The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents. ICES Journal of Marine Science: Journal du Conseil 73: 876–886.

    Google Scholar 

  • Thayer, G.W., K.A. Bjorndal, J.C. Ogden, S.L. Williams, and J.C. Zieman. 1984. Role of larger herbvores in seagrass communities. Estuaries 7: 351–376.

    Google Scholar 

  • Thomas, E. 2008. Descent into the icehouse. Geology 36: 191–192.

    Google Scholar 

  • Thomson, J.A., D.A. Burkholder, M.R. Heithaus, J.W. Fourqurean, M.W. Fraser, J. Statton, and G.A. Kendrick. 2015. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Global Change Biology 21: 1463–1474.

    Google Scholar 

  • Tomasko, D., M. Alderson, R. Burnes, J. Hecker, J. Leverone, G. Raulerson, and E. Sherwood. 2018. Widespread recovery of seagrass coverage in Southwest Florida (USA): temporal and spatial trends and management actoins responsible for success. Marine Pollution Bulletin 135: 1128–1137.

    CAS  Google Scholar 

  • Unsworth, R., C. Collier, G. Henderson, and L. McKenzie. 2012. Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Envrionmental Research Letters 7: 1–9.

    Google Scholar 

  • Waldbusser, G.G., and J.E. Salisbury. 2014. Ocean acidification in the coastal zone from an organism’s perspective: multiple system parameters, frequency domains, and habitats. Annual Review of Marine Science 6: 221–247.

    Google Scholar 

  • Waycott, M., G. Procaccini, D. Les, and T. Reusch. 2006. Seagrass evolution, ecology and conservation: a genetic perspective. In Seagrasses: biology, ecology and conservation, ed. A. Larkum, R. Orth, and C. Duarte, 25–50. Dortrecht: Springer.

    Google Scholar 

  • Waycott, M., C.M. Duarte, T. Carruthers, R. Orth, W. Dennison, S. Olyarnik, A. Calladine, J. Fourqurean, K. Heck, A. Hughes, G. Kendrick, W. Kenworthy, F. Short, and S. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences 106: 12377–12381.

    CAS  Google Scholar 

  • Webb, W., M. Newton, and D. Starr. 1974. Carbon dioxide exchange of Alnus rubra: a mathematical model. Oecol. 17: 281–291.

    Google Scholar 

  • Williams, S.L. 2001. Reduced genetic diversity in eelgrass transplantations affects both population growth and individual fitness. Ecological Applications 11: 1472–1488.

    Google Scholar 

  • Williams, S.L. 2007. Introduced species in seagrass ecosystems: status and concerns. Journal of Experimental Marine Biology and Ecology 350: 89–110.

    Google Scholar 

  • Williams, S.L., and C.A. Davis. 1996. Population genetic analyses of transplanted eelgrass (Zostera marina) beds reveal reduced genetic diversity in southern California. Restoration Ecology 4: 163–180.

    Google Scholar 

  • Williams, S.L., and E.D. Grosholz. 2008. The invasive species challenge in estuarine and coastal environments: marrying management and science. Estuaries and Coasts 31: 3–20.

    Google Scholar 

  • Williams, S.L., and C.P. McRoy. 1982. Seagrass productivity: the effect of light on carbon uptake. Aquatic Botany 12: 321–344.

    CAS  Google Scholar 

  • Williams, S.L., and R.J. Orth. 1998. Genetic diversity and structure of natural and transplanted eelgrass populations in the Chesapeake and Chincoteague Bays. Estuaries 21: 118–128.

    Google Scholar 

  • Williams, S.L., and M.H. Ruckelshaus. 1993. Effects of nitrogen availability and herbivory on eelgrass (Zostera marina) and epiphytes. Ecology 74: 904–918.

    Google Scholar 

  • Williams, S.L., and J.E. Smith. 2007. A global review of the distribution, taxonomy, and impacts of introduced seaweeds. Annual Review of Ecology, Evolution, and Systematics 38: 327–359.

    Google Scholar 

  • Zayas-Santiago, C.C., A. Rivas-Ubach, L.-J. Kuo, N.D. Ward, and R.C. Zimmerman. 2020. Metabolic profiling reveals biochemical pathways responsible for eelgrass response to elevated CO2 and temperature. Scientific Reports 10: 1–11.

    Google Scholar 

  • Zhang, Y.G., M. Pagani, Z. Liu, S.M. Bohaty, and R. DeConto. 2013. A 40-million-year history of atmospheric CO2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371: 20130096.

    Google Scholar 

  • Zimmerman, R. 2003a. Appendix M. Final Report. A bio-physical model evaluation of eelgrass distribution and habitat potential in Dumas Bay, WA. In Puget sound submerged vegetation monitoring project: 2000–2003 monitoring report, 60 pp plus appendices, ed. H.D. Berry, A.T. Sewell, S. Wyllie-Echeverria, B.R. Reeves, T.F. Mumford, J.R. Skalski, R.C. Zimmerman, and J. Archer. Olympia: Nearshore Habitat Program, Washington State Department of Resources.

    Google Scholar 

  • Zimmerman, R. 2003b. A biooptical model of irradiance distribution and photosynthesis in seagrass canopies. Limnology and Oceanography 48: 568–585.

    Google Scholar 

  • Zimmerman, R. 2006. Chapter 13. Light and photosynthesis in seagrass meadows. In Seagrasses: biology, ecology and conservation, ed. A. Larkum, R. Orth, and C. Duarte, 303–321. Dordrecht: Springer.

    Google Scholar 

  • Zimmerman, R.C., R.D. Smith, and R.S. Alberte. 1989. Thermal acclimation and whole plant carbon balance in Zostera marina L. (eelgrass). Journal of Experimental Marine Biology and Ecology 130: 93–109.

    CAS  Google Scholar 

  • Zimmerman, R.C., J.L. Reguzzoni, S. Wyllie-Echeverria, M. Josselyn, and R.S. Alberte. 1991. Assessment of environmental suitability for growth of Zostera marina L. (eelgrass) in San Francisco Bay. Aquatic Botany 39: 353–366.

    Google Scholar 

  • Zimmerman, R., D. Kohrs, D.L. Steller, and R. Alberte. 1995. Carbon partitioning in eelgrass. Regulation by photosynthesis and the response to daily light-dark cycles. Plant Physiology 108: 1665–1671.

    CAS  Google Scholar 

  • Zimmerman, R., D. Kohrs, D. Steller, and R. Alberte. 1997. Impacts of CO2 -enrichment on productivity and light requirements of eelgrass. Plant Physiology 115: 599–607.

    CAS  Google Scholar 

  • Zimmerman, R., V. Hill, and C. Gallegos. 2015. Predicting effects of ocean warming, acidification and water quality on Chesapeake region eelgrass. Limnology and Oceanography 60: 1781–1804.

    Google Scholar 

  • Zimmerman, R., V. Hill, B. Celebi, M. Jinuntuya, D. Ruble, M. Smith, T. Cedeno, and W. Swingle. 2017. Experimental impacts of climate warming and ocean carbonation on eelgrass (Zostera marina L.). Marine Ecology Progress Series 566: 1–15.

    CAS  Google Scholar 

Download references

Acknowledgments

Many thanks for the insight, guidance, and creativity of mentors, collaborators, and students who helped articulate and demonstrate the ideas presented here, especially James Kremer, Randall Alberte, Steve Ackleson, Olga Invers, Sherry Palacios, Heidi Dierssen, Victoria Hill, David Ruble, Billur Celebi, Meredith McPherson, and Carmen Zayas-Santiago, as well as numerous colleagues for providing lively discussions that helped formulate these ideas over the years. A special thank you to Robert Howarth and Ken Heck for initially suggesting this review and for their patience during its longer-than expected gestation. Dedicated to the memory of Susan Williams.

Funding

Financial support for the preparation of this manuscript was provided by the National Science Foundation (OCE-1635403), the Ocean Biology and Biogeochemistry Program of the National Aeronautics and Space Administration (NNX17AH01G), and the Ocean Acidification Program of the National Oceanic and Atmospheric Administration (NA18NOS4780177).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard C. Zimmerman.

Ethics declarations

Disclaimer

Any opinions, conclusions, recommendations, and especially the errors expressed in this essay are those of the author and do not necessarily reflect the views of my mentors, colleagues, students, or the funding agencies.

Additional information

Communicated by Kenneth L. Heck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmerman, R.C. Scaling up: Predicting the Impacts of Climate Change on Seagrass Ecosystems. Estuaries and Coasts 44, 558–576 (2021). https://doi.org/10.1007/s12237-020-00837-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00837-7

Keywords

Navigation