Skip to main content

Advertisement

Log in

The Potential of Mangrove-Derived Organic Matter in Sediments for Tracing Mangrove Development During the Holocene

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The responses of mangroves to future climate change can be reconstructed from past mangrove dynamics using proxies preserved in sediments. The contributions of mangrove-derived organic matter (MOM) can be calculated by using δ13Corg and molar C:N values. In order to verify the effectiveness of MOM for tracing mangrove development, four typical regions are chosen, including the Beibu Gulf of SW China, western coast of peninsular India, Flamenco Lagoon of Puerto Rico, and Amazon estuary of northern Brazil. The results showed that the temporal variation of calculated MOM is similar to the abundance of mangrove pollen (MP) in each core. There are significant positive correlations between them, with correlation coefficients ranging from 0.68 to 0.89 (P < 0.01). However, there is no correlation (R = 0.02, P > 0.05, n = 281) between MOM and MP globally, owing to the complexities of OM provenance and pollen transmission. It is indicated that MOM is a potential proxy for regional mangrove development during the Holocene. The proxy should be useful to reconstruct high-resolution mangrove development, owing to its easily fine-cut sampling and cheaper cost of instrumentation compared with pollen and biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alongi, D.M. 2011. The energetics of mangrove forests. Austral Ecology 36: 18–19.

    Google Scholar 

  • Alongi, D.M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science 6 (1): 195–219.

    Google Scholar 

  • Andrews, J.E., A.M. Greenaway, and P.F. Dennis. 1998. Combined carbon isotope and C/N ratios as indicator of sources and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston harbour, Jamaica. Estuarine, Coastal and Shelf Science 46 (5): 743–756.

    CAS  Google Scholar 

  • Badeck, F.W., G.S. Tcherkz, C.P. Nogués, and J. Ghashghaie. 2005. Post-photosynthetic fractionation of stable carbon isotopes between plant organs—A widespread phenomena. Rapid Communications in Mass Spectrometry 19 (11): 1381–1391.

    CAS  Google Scholar 

  • Behling, H., M.C.L. Cohen, and J.R. Lara. 2004. Late Holocene mangrove dynamics of the Marajó Island in northern Brazil. Vegetation History and Archaeobotany 13: 73–80.

    Google Scholar 

  • Bouillon, S., P. Mohan, N. Sreenivas, and F. Dehairs. 2000. Source of suspended organic matter and selective feeding by zooplankton in an estuarine mangrove ecosystem as traced by stable isotopes. Marine Ecology Progress Series 208: 79–92.

    Google Scholar 

  • Bouillon, S., F. Dahdouh-Guebas, A.V.V.S. Rao, N. Koedam, and F. Dehairs. 2003. Sources of organic carbon in mangrove sediments: Variability and possible ecological implications. Hydrobiologia 495 (1/3): 33–39.

    CAS  Google Scholar 

  • Bouillon, S., T. Moens, N. Koedam, F. Dahdouh-Guebas, W. Baeyens, and F. Dehairs. 2004. Variability in the origin of carbon substrates for bacterial communities in mangrove sediments. FEMS Microbiology Ecology 49 (2): 171–179.

    CAS  Google Scholar 

  • Bouillon, S., R.M. Connolly, and S.Y. Lee. 2008. Organic matter exchange and cycling in mangrove ecosystems: Recent insights from stable isotope studies. Journal of Sea Research 59 (1-2): 44–58.

    CAS  Google Scholar 

  • Calder, J.A., and P.L. Parker. 1968. Stable carbon isotope ratios as indices of petrochemical pollution of aquatic systems. Environment Science & Technology 2 (7): 535–539.

    CAS  Google Scholar 

  • Caratini, C., I. Bentaleb, M. Fontugne, M.T. Morzadec-Kerfourn, and J.P. Pascal. 1994. A less-humid climate since ca. 3500 yr B.P. from marine cores off Karwar, western India. Palaeogeography, Palaeoclimatology, Palaeoecology 109 (2-4): 371–384.

    Google Scholar 

  • Chong, V.C., C.B. Low, and T. Ichikawa. 2001. Contribution of mangrove detritus to juvenile prawn nutrition: A dual stable isotope study in a Malaysian mangrove forest. Marine Biology 138 (1): 77–86.

    CAS  Google Scholar 

  • Cohen, M.C.L., and R.J. Lara. 2003. Temporal changes of mangrove vegetation boundaries in Amazonia: Application of GIS and remote sensing techniques. Wetlands Ecology and Management 11 (4): 223–231.

    Google Scholar 

  • Cohen, M.C.L., H. Behling, and R.J. Lara. 2005a. Amazonian mangrove dynamics during the last millennium: The relative sea-level and little ice age. Review of Palaeobotany and Palynology 136 (1-2): 93–108.

    Google Scholar 

  • Cohen, M.C.L., F.P.W. Souza, R.J. Lara, H. Behling, and R. Angulo. 2005b. A model of Holocene mangrove development and sea-level changes on the Bragança peninsula (northern Brazil). Wetlands Ecology and Management 13 (4): 433–443.

    Google Scholar 

  • Cohen, M.C.L., R.J. Lara, C.B. Smith, R.S. Angėlica, B.S. Dias, and T. Pequeno. 2008. Wetland dynamics of Marajó Island, northern Brazil during the last 1000 years. Catena 76 (1): 70–77.

    Google Scholar 

  • Cohen, M.C.L., R.J. Lara, C.B. Smith, H.R.S. Matos, and V. Vedel. 2009. Impact of sea-level and climate changes on the Amazon coastal wetlands during the late Holocene. Vegetation. History Archaeobotany 18 (6): 425–439.

    Google Scholar 

  • Cohen, M.C.L., L.C.R. Pessenda, H. Behling, D.F. Rossetti, F.C. França, J.T.F. Guimarães, Y. Friaes, and C.B. Smith. 2012. Holocene palaeoenvironmental history of the Amazonian mangrove belt. Quaternary Science Reviews 55: 50–58.

    Google Scholar 

  • Cohen, M.C.L., R.J. Lara, E. Cuevas, E.M. Oliveras, and L.D.S. Sternberg. 2016. Effects of sea-level rise and climatic changes on mangroves from southwestern littoral of Puerto Rico during the middle and late Holocene. Catena 143: 187–200.

    CAS  Google Scholar 

  • Daly, C., E.H. Helmer, and M. Quiñones. 2003. Mapping the climate of Puerto Rico, Vieques and Culebra. International Journal of Climatology 23 (11): 1359–1381.

    Google Scholar 

  • de Boer, W. 2000. Biomass dynamics of seagrasses and the role of mangrove and seagrass vegetation as different nutrient sources for an intertidal ecosystem. Aquatic Botany 66 (3): 225–239.

    Google Scholar 

  • Dittmar, T., R.J. Lara, and G. Kattner. 2001. River or mangrove? Tracing major organic matter sources in tropical Brazilian coastal waters. Marine Chemistry 73 (3-4): 253–271.

    CAS  Google Scholar 

  • Duarte, C.M. 1992. Nutrient concentration of aquatic plants: Patterns across species. Limnology and Oceanography 37 (4): 882–889.

    CAS  Google Scholar 

  • Duarte, C.M., J.J. Middleburg, and N. Caraco. 2005. Major role in marine vegetation on the ocean carbon cycle. Biogeosciences 1: 173–180.

    Google Scholar 

  • Ellison, J.C. 1993. Mangrove retreat with rising sea-level, Bermuda. Estuarine, Coastal and Shelf Science 37 (1): 75–87.

    CAS  Google Scholar 

  • Ellison, J.C. 2008. Long-term retrospection on mangrove development using sediment cores and pollen analysis: A review. Aquatic Botany 89 (2): 93–104.

    Google Scholar 

  • Ellison, J.C., and D.R. Stoddart. 1991. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. Journal of Coastal Research 7: 151–165.

    Google Scholar 

  • Fan, H.Q., G.L. Qiu, Y.J. Shi, and S. Li. 2011. Studies on physiological ecology of seagrasses in subtropical China, 202. Beijing: Science China Press (in Chinese).

    Google Scholar 

  • Faure, G. 1986. Principles of isotope geology (2nd, ed.), 326. New York: Wiley.

    Google Scholar 

  • França, F.C., M.I. Franciquini, M.C.L. Cohen, L.C.R. Pessenda, D.F. Rossetti, J. Guimarães, and C.B. Smith. 2012. The last mangroves of Marajó Island – Eastern Amazon: Impact of climate and/or relative sea-level changes. Review of Palaeobotany and Palynology 187: 50–65.

    Google Scholar 

  • França, F.C., M.I. Francisquini, M.C.L. Cohen, and L.C.R. Pessemda. 2014. Inter-proxy evidence for the development of Amazonian mangroves during the Holocene. Vegetation History and Archaeobotany 23 (5): 527–542.

    Google Scholar 

  • Gillman, E., J. Ellison, and R. Coleman. 2007. Assessment of mangrove response to projected relative sea-level rise and recent historical reconstruction of shoreline position. Environmental Monitoring and Assessment 124 (1-3): 105–130.

    Google Scholar 

  • Giri, C., E. Ochieng, L.L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek, and N. Duke. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography 20 (1): 154–159.

    Google Scholar 

  • Goñi, M.A., K.C. Ruttenberg, and T.I. Eglinton. 1997. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico. Nature 389 (6648): 275–278.

    Google Scholar 

  • Gonneea, M.E., A. Paytan, and J.A. Herrera-Silveira. 2004. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine, Coastal and Shelf Science 61 (2): 211–227.

    CAS  Google Scholar 

  • González-Farias, F., and L.D. Mee. 1988. Effect of mangrove humic-like substances on biodegradation rate of detritus. Journal of Experimental Biology and Ecology 119 (1): 1–13.

    Google Scholar 

  • Guimarães, J.T.F., M.C.L. Cohen, L.C.R. Pessenda, F.C. França, C.B. Smith, and A.C.R. Nogueira. 2012. Mid- and Late-Holocene sedimentary process and palaeovegetation changes near the mouth of the Amazon River Holocene. The Holocene 22 (3): 359–370.

    Google Scholar 

  • Hedges, J.I., and W.A. Clark. 1986. Compositions and fluxes of particulate organic material in the Amazon River. Limnology and Oceanography 31 (4): 717–738.

    CAS  Google Scholar 

  • Holmer, M., and A.B. Olsen. 2002. Role of decomposition of mangrove and seagrass detritus in sediment carbon and nitrogen cycling in a tropical mangrove forest. Marine Ecology Progress Series 230: 87–101.

    Google Scholar 

  • Hu, J., P. Peng, G. Jia, B. Mai, and G. Zhang. 2006. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, southern China. Marine Chemistry 98 (2-4): 274–285.

    CAS  Google Scholar 

  • Huang, Y.S., F.A. Street-Perrott, and S.E. Metcalfe. 2001. Climate change as the dominant control on glacial-interglacial variation in C3 and C4 plant abundance. Science 293 (5535): 1647–1651.

    CAS  Google Scholar 

  • Jia, M., Z. Wang, Y. Zhang, C. Ren, and K. Song. 2015. Landsat-based estimation of mangrove forest loss and restoration in Guangxi province, China, influenced by human and natural factors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8 (1): 311–323.

    Google Scholar 

  • Kristensen, E., S. Bouillon, T. Dittmar, and C. Marchand. 2008. Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany 89: 210–219.

    Google Scholar 

  • Lamb, A.L., G.P. Wilson, and M.J. Leng. 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews 75 (1-4): 29–57.

    CAS  Google Scholar 

  • Lara, R.J., and M.C.L. Cohen. 2009. Palaeolimnological studies and ancient maps confirm secular climate fluctuation in Amazonia. Climate Change 94: 309–408.

    Google Scholar 

  • Li, Z., Z.Y. Zhang, J. Li, Y.L. Zhang, Z. Li, L.J. Liu, H.Q. Fan, and G.Z. Li. 2008. Pollen distribution in surface sediments of a mangrove system, Yingluo Bay, Guangxi, China. Review of Palaeobotany and Palynology 152 (1-2): 21–31.

    Google Scholar 

  • Li, Z., Y. Saito, L. Mao, T. Tamura, Z. Li, B. Song, Y. Zhang, A. Lu, S. Sieng, and J. Li. 2012. Mid-Holocene mangrove succession and its response to sea-level change in the upper Mekong River delta, Cambodia. Quaternary Research 78 (2): 386–399.

    Google Scholar 

  • Liu, W.G., Z.S. An, W.J. Zhou, M.J. Head, and D.L. Cai. 2003. Carbon isotope and C/N ratio of suspended matter in rivers: An indicator of seasonal change in C4/C3 vegetation. Applied Geochemistry 18: 1241–1249.

    CAS  Google Scholar 

  • Loneragan, N.R., S.E. Bunn, and D.M. Kellaway. 1997. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? Marine Biology 130 (2): 289–300.

    Google Scholar 

  • Lorente, F.L., L.C.R. Pessenda, F. Oboh-Ikuenobe, A.A. Buso Jr., M.C.K. Cohen, K.E.B. Meyer, P.C.F. Giannini, P.E. de Olieira, D.D.F. Rossetti, M.A.B. Filho, M.C. França, D.F. de Castro, G.A. Bendassolli, and I. Macario. 2014. Palynofacies and stable C and N isotopes of Holocene sediments from Lake Macuco (Linhares, Espĺrito Santo, southeastern Brazil): Depositional settings and palaeoenvironmental evolution. Palaeogeography, Palaeoclimatology, Palaeoecology 415: 69–82.

    Google Scholar 

  • Matson, E.A., and M.M. Brinson. 1990. Stable carbon isotopes and the C:N ratio in the estuaries of the Pamlico and Neuse Rivers, North Carolina. Limnology and Oceanography 35 (6): 1290–1300.

    CAS  Google Scholar 

  • Meng, X., P. Xia, Z. Li, and D. Meng. 2016. Mangrove degradation and response to anthropogenic disturbance in the Maowei Sea (SW China) since 1926 AD: Mangrove–derived OM and pollen. Organic Geochemistry 98: 166–175.

    CAS  Google Scholar 

  • Meng, X., P. Xia, Z. Li, and D. Meng. 2017. Mangrove development and its response to Asian monsoon in the Yingluo Bay (SW China) over the last 2000 years. Estuaries and Coasts 40 (2): 540–552.

    CAS  Google Scholar 

  • Meyers, P.A., and R. Ishiwatari. 1993. The early diagenesis of organic matter in lacustrine sediments. In Organic geochemistry: Principles and applications. Geobiology, ed. M.H. Engel and S.A. Macko, 185–209. New York: Plenum.

    Google Scholar 

  • Monacci, N.M., U. Meier-Grünhagen, B.P. Finney, H. Behling, and M.J. Wooller. 2009. Mangrove ecosystem changes during the Holocene at Spanish Lookout cay, Belize. Palaeogeography, Palaeoclimatology, Palaeoecology 280 (1-2): 37–46.

    Google Scholar 

  • Mooney, H.A., H.A. Bullock, and J.R. Ehleringer. 1989. Carbon isotope ratios of plants of a tropical forest in Mexico. Functional Ecology 3 (2): 137–142.

    Google Scholar 

  • Ottesen, D.K., J.C.F. Wang., and L.J. Radziemski. 1989. Real-time laser spark spectroscopy of particulates in combustion environments. Applied Spectroscopy 43: 967–976.

  • Parkinson, R.W., R.D. Delaune, and J.R. White. 1994. Holocene sea-level rise and the fate of mangrove forest within the wider Caribbean region. Journal of Coast Research 10: 1077–1086.

    Google Scholar 

  • Pessenda, L.C.R., E. Vidotto, P.E.D. Oliveira, A.A. Buso Jr., M.C.L. Cohen, D.D.F. Rossetti, F. Ricardi-Branco, and J.A. Bendassolli. 2012. Late Quaternary vegetation and coastal environmental change at Ilha do Cardoso mangrove, southeastern Brazil. Palaeogeography, Palaeoclimatology, Palaeoceology 363–364: 67–68.

    Google Scholar 

  • Prasad, M.B.K., and A.L. Ramanathan. 2009. Organic matter characterization in a tropical estuarine-mangrove ecosystem in India: Preliminary assessment by using isotopes and lignin phenols. Estuarine, Coastal and Shelf Science 87: 617–624.

    Google Scholar 

  • Ramaswamy, V., B. Gaye, P.V. Shirodkar, A.R. Chivas, D. Wheeler, and S. Thwin. 2008. Distribution and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Marine Chemistry 111 (3–4): 137–150.

    CAS  Google Scholar 

  • Rao, Z., Z. Zhu, G. Jia, F. Chen, B. Loukas, J. Zhang, and M. Qiang. 2010. Relationship between climatic conditions and the relative abundance of modern C3 and C4 plants in three regions around the North Pacific. Chinese Science Bulletin 55 (18): 1931–1936.

    CAS  Google Scholar 

  • Ray, R., and M. Shahraki. 2016. Multiple sources driving the organic matter dynamics in two contrasting tropical mangroves. Science of the Total Environment 571: 218–227.

    CAS  Google Scholar 

  • Richey, J.E., R.H. Meade, E. Salati, A.H. Devol, C.F. Nordin Jr., and U.D. Santos. 1986. Water discharge and suspended sediment concentrations in the Amazon River: 1982-1984. Water Resources Research 22 (5): 756–764.

    CAS  Google Scholar 

  • Robertson, A., and D.M. Alongi. 2016. Massive turnover rates of fine root detrital carbon in tropical Australian mangroves. Oceanologia 180: 841–851.

    Google Scholar 

  • Rossetti, D.F., A.M. Goes, M.M. Valeriano, and M.C.C. Miranda. 2007. Quaternary tectonics in a passive margin: Marajó Island, northern Brazil. Journal of Quaternary Science 22: 1–15.

    Google Scholar 

  • Saintilan, N., K. Rogers, D. Mazumder, and C. Woodroffe. 2013. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Research 128: 84–92.

    CAS  Google Scholar 

  • Sampei, Y., and E. Matsumoto. 2001. C/N ratios in a sediment core from Nakaumi Lagoon, Southwest Japan: Usefulness as an organic source indicator. Geochemical Journal 35 (3): 189–205.

    CAS  Google Scholar 

  • Schultz, D., and J.A. Calder. 1976. Organic carbon 13C/12C variations in estuarine sediments. Geochimica et Cosmochimica Acta 40 (4): 381–385.

    Google Scholar 

  • State of Oceanic Administration, China, 2010. www. soa. gov. cn.

  • Stattegger, K., R. Tjallingii, Y. Saito, M. Michelli, N.T. Thanh, and A. Wetzel. 2013. Mid to Late Holocene sea-level reconstruction of Southeast Vietnam using beachrock and beach-ridge deposits. Global and Planetary Change 110: 214–222.

    Google Scholar 

  • Tanabe, S., K. Hori, Y. Saito, S. Haruyama, V.P. Vu, and A. Kitamura. 2003. Song Hong (Red River) delta evolution related to millennium-scale Holocene sea-level changes. Quaternary Science Reviews 22 (21-22): 2345–2361.

    Google Scholar 

  • Thornton, S.F., and J. McManus. 1994. Application of organic carbon and nitrogen stable isotopes and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay Estuary, Scotland. Estuarine, Coastal and Shelf Science 38 (3): 219–233.

    CAS  Google Scholar 

  • Tue, N.T., H. Hamaoka, A. Sogabe, T.D. Quy, T. Nhuan, and K. Omori. 2011. The application of δ13C and C/N ratios as indicator of organic carbon sources and paleoenvironmental change of the mangrove ecosystem from Ba Lat estuary, Red River, Vietnam. Environmental Earth Sciences 64 (5): 1475–1486.

    Google Scholar 

  • Vane, C.H., A.W. Kim, and V. Moss-Hayes. 2013. Degradation of mangrove tissues by arboreal termites (Nasutitermes acajulae) and their role in mangrove C cycle (Puerto Rico): Chemical characterization and organic matter provenance using bulk δ13C, C/N, alkaline CuO oxidation GC/MS and solid-state 13C NMR. Geochemistry Geophysics Geosystems 14: 3176–3191.

    Google Scholar 

  • Versteegh, G.J.M., E. Schefuß, L. Dupon, F. Marret, J.S.S. DamstÉ, and J.H.F. Jansen. 2004. Taraxerol and Rhizophora pollen as proxies for tracking past mangrove ecosystems. Geochimica et Cosmochimica Acta 68 (3): 411–422.

    CAS  Google Scholar 

  • von Fischer, J.C., and L.L. Tieszen. 1995. Carbon isotope characterization of vegetation and soil organic matter in subtropical forests in Luquillo, Puerto Rico. Biotropica 27 (2): 138–148.

    Google Scholar 

  • Wang, Y.J., H. Cheng, R.L. Edwards, Y.Q. He, X.G. Kong, Z.S. An, J.Y. Wu, M.J. Kelly, C.A. Dykoski, and X.D. Li. 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 308 (5723): 854–857.

    CAS  Google Scholar 

  • Wei, L., C. Yan, G. Wu, X. Guo, and B. Ye. 2008. Variation of δ13C in Aegiceras corniculatum seedling induced by cadmium application. Ecotoxicology 17 (6): 480–484.

    CAS  Google Scholar 

  • Wooller, M., B. Smallwood, U. Scharler, M. Jacobson, and M. Fogel. 2003. A taphonomic study of δ13C and δ15N values in Rhizophora mangle leaves for a multi-proxy approach to mangrove palaeoecology. Organic Geochemistry 34 (9): 1259–1295.

    CAS  Google Scholar 

  • Wooller, M.J., R. Morgan, S. Fowell, B. Hermann, and M. Fogel. 2007. A multiproxy peat record of Holocene mangrove palaeoecology from Twin Cays, Belize. The Holocene 17 (8): 1129–1139.

    Google Scholar 

  • Xia, P., X. Meng, Z. Li, A. Feng, P. Yin, and Y. Zhang. 2015. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150 years: Stable carbon isotopes and mangrove pollen. Organic Geochemistry 85: 32–41.

    CAS  Google Scholar 

  • Yamamuro, M. 2000. Chemical tracers of sediment organic matter origins in two coastal lagoons. Journal of Marine Systems 26 (2): 127–134.

    Google Scholar 

  • Yulianto, E., W.S. Sukapti, A.T. Rahardjo, D. Noeradi, D.A. Siregar, P. Suparan, and K. Hirakawa. 2004. Mangrove shoreline responses to Holocene environmental change, Makassar Strait, Indonesia. Review of Palaeobotany and Palynology 131 (3-4): 251–268.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the critical and constructive comments on the original manuscript by Dr. Rui Bao and two other anonymous reviewers.

Funding

This work was supported by the National Natural Science Foundation of China under contract Nos. 41576067 and 41576061, the Basic Scientific Fund for National Public Research Institutes of China under contract No. 2017Q03, and the National Key Scientific Research Project on Global Climate Change under Grant No. 2010CB951203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianwei Meng.

Additional information

Communicated by Zhanfei Liu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, P., Meng, X., Zhang, Y. et al. The Potential of Mangrove-Derived Organic Matter in Sediments for Tracing Mangrove Development During the Holocene. Estuaries and Coasts 44, 1020–1035 (2021). https://doi.org/10.1007/s12237-020-00826-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00826-w

Keywords

Navigation