Skip to main content

Advertisement

Log in

Decadal Monitoring in Bermuda Shows a Widespread Loss of Seagrasses Attributable to Overgrazing by the Green Sea Turtle Chelonia mydas

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The condition of seagrass habitat and the marine environment on the Bermuda Platform, a mid-oceanic shallow water habitat in the northwest Atlantic, has been monitored since 2006. The overall oceanic climate of the Platform is subtropical; the Platform supports communities of tropical marine seagrasses, including Thalassia testudinum, Syringodium filiforme, Halodule sp., and Halophila decipiens. At the beginning of the study, the general condition of seagrass beds at 17 permanent offshore and nearshore sites indicated that 14 were healthy, complex, and thriving communities, and three represented offshore beds, which had declined precipitously prior to the initiation of study. Over the period of the study, seagrass beds declined at all 17 sites; three beds disappeared, and there was no recovery at the sites known to have declined prior to 2006. Over the same period, there was no apparent negative change in the water quality overlying the seagrass beds. Assessments of elemental content, stable isotopic composition, and leaf morphology indicated that grazing by the green turtle (Chelonia mydas) is driving the decline of the seagrasses of Bermuda. Given the feeding behavior of these turtles on the Bermuda Platform, human intervention may be required to mitigate the decline of seagrass in Bermuda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abal, E.G., N. Loneragan, P. Bowen, C.J. Perry, J.W. Udy, and W.C. Dennison. 1994. Physiological and morphological responses of the seagrass Zostera capricorni Ascher. to light intensity. Journal of Experimental Marine Biology and Ecology 178 (1): 113–129.

    Article  Google Scholar 

  • Ammerman, J.W., R.R. Hood, D.A. Case, and J.B. Cotner. 2003. Phosphorus deficiency in the Atlantic: an emerging paradigm in oceanography. Eos 84 (18): 165–170.

    Article  Google Scholar 

  • Armitage, A.R., and J.W. Fourqurean. 2006. The short-term influence of herbivory near patch reefs varies between seagrass species. Journal of Experimental Marine Biology and Ecology 339 (1): 65–74.

    Article  Google Scholar 

  • Atkinson, M.J., and S.V. Smith. 1983. C:N:P ratios of benthic marine plants. Limnology and Oceanography 28 (3): 568–574.

    Article  CAS  Google Scholar 

  • Austin, A.N., J.P. Hansen, S. Donadi, and J.S. Eklof. 2017. Relationships between aquatic vegetation and water turbidity: a field survey across seasons and spatial scales. PLoS One 12 (8): 20. https://doi.org/10.1371/journal.pone.0181419.

    Article  CAS  Google Scholar 

  • Baker, D.M., T.J.T. Murdoch, I. Conti-Jerpe, and M. Fogel. 2017. Investigating Bermuda’s pollution history through stable isotope analyses of modern and museum-held gorgonian corals. Marine Pollution Bulletin 114 (1): 169–175. https://doi.org/10.1016/j.marpolbul.2016.08.069.

    Article  CAS  Google Scholar 

  • Beck, M.W., K.L. Heck, K.W. Able, D.L. Childers, D.B. Eggleston, B.M. Gillanders, B. Halpern, et al. 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51 (8): 633–641. https://doi.org/10.1641/0006-3568(2001)051[0633:ticamo]2.0.co;2.

    Article  Google Scholar 

  • Bjorndal, K.A. 1997. Foraging ecology and nutrition of sea turtles. In The biology of sea turtles, ed. P.L. Lutz and J.A. Musick, 199–231. Boca Raton: CRC Press.

    Google Scholar 

  • Bjorndal, K.A., A.B. Bolten, and M.Y. Chaloupka. 2000. Green turtle somatic growth model: evidence for density dependence. Ecological Applications 10 (1): 269–282. https://doi.org/10.2307/2641001.

    Article  Google Scholar 

  • Blandon, A., and P.S.E. zu Ermgassen. 2014. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuarine Coastal and Shelf Science 141: 1–8. https://doi.org/10.1016/j.ecss.2014.10.009.

    Article  Google Scholar 

  • Burgett, C.M., D.A. Burkholder, K.A. Coates, V.L. Fourqurean, W.J. Kenworthy, S.A. Manuel, M.E. Outerbridge, and J.W. Fourqurean. 2018. Ontogenetic diet shifts of green sea turtles (Chelonia mydas) in a mid-ocean developmental habitat. Marine Biology 16: 33. https://doi.org/10.1007/s00227-018-3290-6.

    Article  Google Scholar 

  • Burkholder, D.A., M.R. Heithaus, J.A. Thomson, and J.W. Fourqurean. 2011. Diversity in trophic interactions of green sea turtles (Chelonia mydas) on a relatively pristine coastal seagrass foraging ground. Marine Ecology Progress Series 439: 277–293. https://doi.org/10.3354/meps09313.

    Article  Google Scholar 

  • Burkholder, D.A., M.R. Heithaus, and J.W. Fourqurean. 2012. Feeding preferences of herbivores in a relatively pristine subtropical seagrass ecosystem. Marine and Freshwater Research 63 (11): 1051–1058. https://doi.org/10.1071/mf12029.

    Article  Google Scholar 

  • Campbell, J.E., and J.W. Fourqurean. 2009. Interspecific variation in the elemental and stable isotopic content of seagrasses in South Florida. Marine Ecology Progress Series 387: 109–123.

    Article  CAS  Google Scholar 

  • Cardona, L., A. Aguilar, and L. Pazos. 2009. Delayed ontogenic dietary shift and high levels of omnivory in green turtles (Chelonia mydas) from the NW coast of Africa. Marine Biology 156 (7): 1487–1495. https://doi.org/10.1007/s00227-009-1188-z.

    Article  CAS  Google Scholar 

  • Christianen, M.J.A., P.M.J. Herman, T.J. Bouma, L.P.M. Lamers, M.M. van Katwijk, T. van der Heide, P.J. Mumby, B.R. Silliman, S.L. Engelhard, M. van de Kerk, W. Kiswara, and J. van de Koppel. 2014. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B-Biological Sciences 281 (1777): 20132890. https://doi.org/10.1098/rspb.2013.2890.

    Article  Google Scholar 

  • Coates, K.A., J.W. Fourqurean, W.J. Kenworthy, A. Logan, S.A. Manuel, and S.R. Smith. 2013. Introduction to Bermuda geology, oceanography and climate. In Coral reefs of the world, ed. C. Sheppard . Dordrecht: Springer.336pp

    Google Scholar 

  • Cooper, L.W., and M.J. DeNiro. 1989. Stable carbon isotope variability in the seagrass Posidonia oceanica: evidence for light intensity effects. Marine Ecology Progress Series 50: 225–229.

    Article  CAS  Google Scholar 

  • Costanza, R., R. de Groot, P. Sutton, S. van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber, and R.K. Turner. 2014. Changes in the global value of ecosystem services. Global Environmental Change-Human and Policy Dimensions 26: 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002.

    Article  Google Scholar 

  • de Groot, R., L. Brander, S. van der Ploeg, R. Costanza, F. Bernard, L. Braat, M. Christie, N. Crossman, A. Ghermandi, L. Hein, S. Hussain, P. Kumar, A. McVittie, R. Portela, L.C. Rodriguez, P. ten Brink, and P. van Beukering. 2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services 1 (1): 50–61. https://doi.org/10.1016/j.ecoser.2012.07.005.

    Article  Google Scholar 

  • Duarte, C.M. 1990. Seagrass nutrient content. Marine Ecology Progress Series 67: 201–207.

    Article  Google Scholar 

  • Duarte, C.M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41 (1): 87–112.

    Article  Google Scholar 

  • Duarte, C.M., N. Marba, E. Gacia, J.W. Fourqurean, J. Beggins, C. Barron, and E.T. Apostolaki. 2010. Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24 (4): GB4032. https://doi.org/10.1029/2010GB003793.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., and L.M. Rutten. 2003. Competing goals of spatial and temporal resolution: monitoring seagrass communities on a regional scale. In Monitoring ecosystem initiatives: interdisciplinary approaches for evaluating ecoregional initiatives, ed. D.E. Busch and J.C. Trexler, 257–288. Washington, D. C: Island Press.

    Google Scholar 

  • Fourqurean, J.W., J.C. Zieman, and G.V.N. Powell. 1992. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Marine Biology 114: 57–65.

    CAS  Google Scholar 

  • Fourqurean, J.W., G.V.N. Powell, W.J. Kenworthy, and J.C. Zieman. 1995. The effects of long-term manipulation of nutrient supply on competition between the seagrasses Thalassia testudinum and Halodule wrightii in Florida Bay. Oikos 72 (3): 349–358.

    Article  Google Scholar 

  • Fourqurean, J.W., A.W. Willsie, C.D. Rose, and L.M. Rutten. 2001. Spatial and temporal pattern in seagrass community composition and productivity in South Florida. Marine Biology 138 (2): 341–354.

    Article  Google Scholar 

  • Fourqurean, J.W., S.P. Escorcia, W.T. Anderson, and J.C. Zieman. 2005. Spatial and seasonal variability in elemental content, δ13C, and δ15N of Thalassia testudinum from South Florida and its implications for ecosystem studies. Estuaries 28 (3): 447–461.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., N. Marbà, C.M. Duarte, E. Diaz-Almela, and S. Ruiz-Halpern. 2007. Spatial and temporal variation in the elemental and stable isotopic content of the seagrasses Posidonia oceanica and Cymodocea nodosa from the Illes Balears, Spain. Marine Biology 151 (1): 219–232.

    Article  Google Scholar 

  • Fourqurean, J.W., S. Manuel, K.A. Coates, W.J. Kenworthy, and S.R. Smith. 2010. Effects of excluding sea turtle herbivores from a seagrass bed: overgrazing may have led to loss of seagrass meadows in Bermuda. Marine Ecology Progress Series 419: 223–232.

    Article  Google Scholar 

  • Fourqurean, J.W., C.M. Duarte, H. Kennedy, N. Marba, M. Holmer, M.A. Mateo, E.T. Apostolaki, et al. 2012. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience 5 (7): 505–509. https://doi.org/10.1038/ngeo1477.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., S.A. Manuel, K.A. Coates, W.J. Kenworthy, and J.N. Boyer. 2015. Water quality, isoscapes and stoichioscapes of seagrasses indicate general P limitation and unique N cycling in shallow water benthos of Bermuda. Biogeosciences 12 (20): 6235–6249. https://doi.org/10.5194/bg-12-6235-2015.

    Article  CAS  Google Scholar 

  • Grice, A.M., N.R. Loneragan, and W.C. Dennison. 1996. Light intensity and the interactions between physiology, morphology and stable isotope ratios in five species of seagrass. Journal of Experimental Marine Biology and Ecology 195 (1): 91–110.

    Article  CAS  Google Scholar 

  • Hatase, H., K. Sato, M. Yamaguchi, K. Takahashi, and K. Tsukamoto. 2006. Individual variation in feeding habitat use by adult female green sea turtles (Chelonia mydas): are they obligately neritic herbivores? Oecologia 149 (1): 52–64. https://doi.org/10.1007/s00442-006-0431-2.

    Article  Google Scholar 

  • Heithaus, M.R., T. Alcoverro, R. Arthur, D.A. Burkholder, K.A. Coates, M.J.A. Christianen, N. Kelkar, et al. 2014. Seagrasses in the age of sea turtle conservation and shark overfishing. Frontiers in Marine Science 1: 28.

    Article  Google Scholar 

  • Hemminga, M.A., and C.M. Duarte. 2000. Seagrass ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hernandez, A.L.M., and B.I. van Tussenbroek. 2014. Patch dynamics and species shifts in seagrass communities under moderate and high grazing pressure by green sea turtles. Marine Ecology Progress Series 517: 143–157. https://doi.org/10.3354/meps11068.

    Article  Google Scholar 

  • Holzer, K.K., and K.J. McGlathery. 2016. Cultivation grazing response in seagrass may depend on phosphorus availability. Marine Biology 163 (4): 11. https://doi.org/10.1007/s00227-016-2855-5.

    Article  Google Scholar 

  • Howell, L.N., K.J. Reich, D.J. Shaver, A.M. Landry, and C.C. Gorga. 2016. Ontogenetic shifts in diet and habitat of juvenile green sea turtles in the northwestern Gulf of Mexico. Marine Ecology Progress Series 559: 217–229. https://doi.org/10.3354/meps11897.

    Article  CAS  Google Scholar 

  • Hu, X.P., D.J. Burdige, and R.C. Zimmerman. 2012. delta C-13 is a signature of light availability and photosynthesis in seagrasses. Limnology and Oceanography 57 (2): 441–448.

    Article  CAS  Google Scholar 

  • Jones, R., R. Parsons, E. Watkinson, and D. Kendell. 2011. Sewage contamination of a densely populated coral ‘atoll’ (Bermuda). Environmental Monitoring and Assessment 179 (1–4): 309–324. https://doi.org/10.1007/s10661-010-1738-3.

    Article  Google Scholar 

  • Kelkar, N., R. Arthur, M. Marba, and T. Alcoverro. 2013. Greener pastures? High-density feeding aggregations of green turtles precipitate species shifts in seagrass meadows. Journal of Ecology 101 (5): 1158–1168. https://doi.org/10.1111/1365-2745.12122.

    Article  Google Scholar 

  • Lacey, E.A., L. Collado-Vides, and J. Fourqurean. 2014. Morphological and physiological responses of seagrass (Alismatales) to grazers (Testudines: Cheloniidae) and the role of these responses as patch abandonment cues. Revista Biologia Tropical 62 (4): 1535–1548.

    Article  Google Scholar 

  • Lal, A., R. Arthur, N. Marbà, A.W.T. Lill, and T. Alcoverro. 2010. Implications of conserving an ecosystem modifier: increasing green turtle (Chelonia mydas) densities substantially alters seagrass meadows. Biological Conservation 143 (11): 2730–2738.

    Article  Google Scholar 

  • Lamb, J.B., Jajm van de Water, D.G. Bourne, C. Altier, M.Y. Hein, E.A. Fiorenza, N. Abu, J. Jompa, and C.D. Harvell. 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355 (6326): 731–73+. https://doi.org/10.1126/science.aal1956.

    Article  CAS  Google Scholar 

  • Lapointe, B.E., and J. O'Connell. 1989. Nutrient-enhanced growth of Cladophora prolifera in Harrington Sound, Bermuda: eutrophication of a confined, phosphorus-limited marine ecosystem. Estuarine, Coastal and Shelf Science 28 (4): 347–360.

    Article  CAS  Google Scholar 

  • Lomas, M.W., A. Swain, R. Shelton, and J.A. Ammerman. 2004. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnology and Oceanography 49: 2303–2310.

    Article  Google Scholar 

  • Manuel, S.A., K.A. Coates, W.J. Kenworthy, and J.W. Fourqurean. 2013. Tropical species at the northern limit of their range: composition and distribution in Bermuda’s benthic habitats in relation to depth and light availability. Marine Environmental Research 89: 63–75. https://doi.org/10.1016/j.marenvres.2013.05.003.

    Article  CAS  Google Scholar 

  • Mariani, S., and T. Alcoverro. 1999. A multiple-choice feeding-preference experiment utilising seagrasses with a natural population of herbivorous fish. Marine Ecology Progress Series 189: 295–299.

    Article  Google Scholar 

  • McClelland, J.W., I. Valiela, and R.H. Michemer. 1997. Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing urbanization in coastal watersheds. Limnology and Oceanography 42: 930–937.

    Article  CAS  Google Scholar 

  • McGlathery, K.J., R.W. Howarth, and R. Marino. 1992. Nutrient limitation of the macroalga, Penicillus capitatus, associated with subtropical seagrass meadows in Bermuda. Estuaries 15 (1): 18–25.

    Article  CAS  Google Scholar 

  • McMahon, K., C. Collier, and P.S. Lavery. 2013. Identifying robust bioindicators of light stress in seagrasses: a meta-analysis. Ecological Indicators 30: 7–15. https://doi.org/10.1016/j.ecolind.2013.01.030.

    Article  Google Scholar 

  • Meylan, P.A., A.B. Meylan, and J.A. Gray. 2011. The ecology and migrations of sea turtles 8. Tests of the developmental habitat hypothesis. Bulletin of the American Museum of Natural History 357: 1–70.

    Article  Google Scholar 

  • Moore, K.A. 2004. Influence of seagrasses on water quality in shallow regions of the lower Chesapeake Bay. Journal of Coastal Research 10045: 162–178.

    Article  Google Scholar 

  • Moran, K.L., and K.A. Bjorndal. 2005. Simulated green turtle grazing affects structure and productivity of seagrass pastures. Marine Ecology Progress Series 305: 235–247.

    Article  Google Scholar 

  • Moran, K.L., and K.A. Bjorndal. 2007. Simulated green turtle grazing affects nutrient composition of the seagrass Thalassia testudinum. Marine Biology 150 (6): 1083–1092.

    Article  CAS  Google Scholar 

  • Murdoch, T.J.T., A.F. Glasspool, M. Outerbridge, J. Ward, S. Manuel, J. Gray, A. Nash, K.A. Coates, J. Pitt, J.W. Fourqurean, P.A. Barnes, M. Vierros, K. Holzer, and S.R. Smith. 2007. Large-scale decline in offshore seagrass meadows in Bermuda. Marine Ecology Progress Series 339: 123–130.

    Article  Google Scholar 

  • Mutchler, T., and D.K. Hoffman. 2017. Response of seagrass (Thalassia testudinum) metrics to short-term nutrient enrichment and grazing manipulations. Journal of Experimental Marine Biology and Ecology 486: 105–113. https://doi.org/10.1016/j.jembe.2016.09.015.

    Article  Google Scholar 

  • Norlund, L.M., R.K.F. Unsworth, M. Gullström, and L. Cullen-Unsworth. 2018. Global significance of seagrass fishery activity. Fish and Fisheries 19 (3): 399–412.

    Article  Google Scholar 

  • Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck, A.R. Hughes, et al. 2006. A global crisis for seagrass ecosystems. BioScience 56 (12): 987–996.

    Article  Google Scholar 

  • Powell, G.V.N., W.J. Kenworthy, and J.W. Fourqurean. 1989. Experimental evidence for nutrient limitation of seagrass growth in a tropical estuary with restricted circulation. Bulletin of Marine Science 44 (1): 324–340.

    Google Scholar 

  • Powell, G.V.N., J.W. Fourqurean, W.J. Kenworthy, and J.C. Zieman. 1991. Bird colonies cause seagrass enrichment in a subtropical estuary: observational and experimental evidence. Estuarine, Coastal and Shelf Science 32 (6): 567–579.

    Article  Google Scholar 

  • Preen, A. 1995. Diet of dugongs - are they omnivores. Journal of Mammalogy 76 (1): 163–171. https://doi.org/10.2307/1382325.

    Article  Google Scholar 

  • Salihiglu, B., V. Garçon, A. Oschilies, and M.W. Lomas. 2008. Influence of nutrient utilization and remineralization stoichiometry on phytoplankton species and carbon export: a modeling study at BATS. Deep Sea Research Part 1: Oceanographic Research Papers 55 (1): 73–107.

    Article  Google Scholar 

  • Santos, R.G., A.S. Martins, M.B. Batista, and P.A. Horta. 2015. Regional and local factors determining green turtle Chelonia mydas foraging relationships with the environment. Marine Ecology Progress Series 529: 265–277. https://doi.org/10.3354/meps11276.

    Article  Google Scholar 

  • Schneider, C.W., and C.T. Flook. 2017. Could marine animal conservation laws be responsible for the decline or extirpation of macroalgal populations in Bermuda over the past century? Botanica Marina 60 (6): 591–602. https://doi.org/10.1515/bot-2017-0057.

    Article  Google Scholar 

  • Shimada, T., S. Aoki, K. Kameda, J. Hazel, K. Reich, and N. Kamezaki. 2014. Site fidelity, ontogenetic shift and diet composition of green turtles Chelonia mydas in Japan inferred from stable isotope analysis. Endangered Species Research 25 (2): 151–164. https://doi.org/10.3354/esr00616.

    Article  Google Scholar 

  • Short, F.T., and S. Wyllie-Echeverria. 1996. Natural and human-induced disturbance of seagrasses. Environmental Conservation 23 (1): 17–27.

    Article  Google Scholar 

  • Teague, R., F. Provenza, U. Kreuter, T. Steffens, and M. Barnes. 2013. Multi-paddock grazing on rangelands: why the perceptual dichotomy between research results and rancher experience? Journal of Environmental Management 128: 699–717. https://doi.org/10.1016/j.jenvman.2013.05.064.

    Article  Google Scholar 

  • Thayer, G.W., K.A. Bjorndal, J.C. Ogden, S.L. Williams, and J.C. Zieman. 1984. Role of larger herbivores in seagrass communities. Estuaries 7 (4A): 351–376.

    Article  Google Scholar 

  • van Tussenbroek, B.I., J. Cortes, R. Collin, A.C. Fonseca, P.M.H. Gayle, H.M. Guzman, G.E. Jacome, et al. 2014. Caribbean-wide, long-term study of seagrass beds reveals local variations, shifts in community structure and occasional collapse. PLoS One 9 (3): e90600. https://doi.org/10.1371/journal.pone.0090600.

    Article  CAS  Google Scholar 

  • Vincent, A.C.J., S.J. Foster, and H.J. Koldewey. 2011. Conservation and management of seahorses and other Syngnathidae. Journal of Fish Biology 78 (6): 1681–1724. https://doi.org/10.1111/j.1095-8649.2011.03003.x.

    Article  CAS  Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck, A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106 (3): 12377–12381.

    Article  Google Scholar 

  • Wiginton, J.R., and C. McMillan. 1979. Chlorophyll composition under controlled light conditions as related to the distribution of seagrasses in Texas and the U.S Virgin Islands. Aquatic Botany 6: 171–184.

    Article  CAS  Google Scholar 

  • Williams, S.L. 1988. Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Marine Biology 98 (3): 447–455.

    Article  Google Scholar 

  • Zieman, J.C., R.L. Iverson, and J.C. Ogden. 1984. Herbivory effects on Thalassia testudinum leaf growth and nitrogen content. Marine Ecology Progress Series 15: 151–158.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Water quality data were collected and analyzed by J. N. Boyer and H. O. Briceño in the Southeast Environmental Research Program at Florida International University under contract from The Bermuda Government. We thank Anson Nash, Jan Locke, Katie Dilke, Kascia White, Sarah Gosling, and Sara Wilson for many hours of help in the field and laboratory.

Funding

The Department of Conservation Services (now the Department of Environment and Natural Resources) of the Government of Bermuda provided logistics and financial support for this work. Support for WJK was provided by the Center for Coastal Fisheries and Habitat Research, one of the National Centers for Coastal Ocean Science in the National Ocean Service within the US National Oceanic and Atmospheric Administration; financial support for KAC and Katie Dilke was provided by Mr. Bruce Dilke. This is contribution #137 from the Center for Coastal Oceans Research in the Institute of Water and Environment at Florida International University and contribution #277 of the Bermuda Biodiversity Project series, Bermuda Aquarium, Museum and Zoo, Bermuda Department of Environment and Natural Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Fourqurean.

Additional information

Communicated by Masahiro Nakaoka

Electronic supplementary material

ESM 1

Detailed description of water quality methods: ESM_1.pdf (PDF 78 kb)

ESM 2

Time series plots of water quality data from all 17 permanent monitoring stations: ESM_2.pdf (PDF 1150 kb)

ESM 3

Time series plots of measured seagrass metrics from all 17 permanent monitoring stations: ESM_3.pdf (PDF 988 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fourqurean, J.W., Manuel, S.A., Coates, K.A. et al. Decadal Monitoring in Bermuda Shows a Widespread Loss of Seagrasses Attributable to Overgrazing by the Green Sea Turtle Chelonia mydas. Estuaries and Coasts 42, 1524–1540 (2019). https://doi.org/10.1007/s12237-019-00587-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00587-1

Keywords

Navigation