Skip to main content
Log in

Restoration Affects Sexual Reproductive Capacity in a Salt Marsh

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Plant sexual reproduction is an important driver of plant community maintenance, dispersal, and recovery from disturbance. Despite this, sexual reproduction in habitats dominated by clonally spreading perennial species, such as salt marshes, is often ignored. Communities dominated by long-lived perennial species can still depend on sexual reproduction for recolonizing large disturbed patches or for establishing in new patches, such as restored sites. We investigated the influence of restoration and elevation on flowering phenology, potential seed and seedling production, and insect flower damage of the dominant salt marsh grass, Spartina alterniflora, in reference and restored marshes in southeastern Louisiana, USA. We additionally tested whether elevation gradients or soil parameters could explain differences in sexual reproduction between sites. We demonstrate that sediment-slurry amendment restoration may not affect flowering phenology or insect flower damage at ecologically relevant levels, but that restoration activity increases sexual reproductive output at the patch scale. Restoration activity affected reproductive dynamics more often than changes in elevation alone. Restoration of subsiding salt marsh habitat by altering the soil environment may increase sexual reproductive capacity of these wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arganda-Carreras, I., V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. Cardona, and H. Sebastian Seung. 2017. Trainable Weka segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 33 (15): 2424–2426.

    Article  CAS  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81 (2): 169–193.

    Article  Google Scholar 

  • Barrett, S.C. 2015. Influences of clonality on plant sexual reproduction. Proceedings of the National Academy of Sciences 112 (29): 8859–8866.

    Article  CAS  Google Scholar 

  • Bater, C.W., N.C. Coops, M.A. Wulder, T. Hilker, S.E. Nielsen, G. McDermid, and G.B. Stenhouse. 2011. Using digital time-lapse cameras to monitor species-specific understorey and overstorey phenology in support of wildlife habitat assessment. Environmental Monitoring and Assessment 180 (1-4): 1–13.

    Article  Google Scholar 

  • Bertness, M.D., and S.W. Shumway. 1992. Consumer driven pollen limitation of seed production in marsh grasses. American Journal of Botany 79 (3): 288–293.

    Article  Google Scholar 

  • Bertness, M., C. Wise, and A. Ellison. 1987. Consumer pressure and seed set in a salt marsh perennial plant community. Oecologia 71 (2): 190–200.

    Article  CAS  Google Scholar 

  • Biber, P.D., and J.D. Caldwell. 2008. Seed germination and seedling survival of Spartina alterniflora Loisel. American Journal of Agricultural and Biological Sciences 3: 633–638.

    Article  Google Scholar 

  • Blake, G.R., and K.H. Hartge. 1986. Bulk density. Methods of Soil Analysis: Part 1- Physical and Mineralogical Methods. 363–375

  • Bradley, P.M., and J.T. Morris. 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. Ecology 71 (1): 282–287.

    Article  CAS  Google Scholar 

  • Bradley, P., and J. Morris. 1991. The influence of salinity on the kinetics of NH4 + uptake in Spartina alterniflora. Oecologia 85 (3): 375–380.

    Article  CAS  Google Scholar 

  • Callaway, J.C., and M.N. Josselyn. 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in South San Francisco Bay. Estuaries and Coasts 15 (2): 218–226.

    Article  Google Scholar 

  • Crosby, S.C., M. Ivens-Duran, M.D. Bertness, E. Davey, L.A. Deegan, and H.M. Leslie. 2015. Flowering and biomass allocation in US Atlantic coast Spartina alterniflora. American Journal of Botany 102 (5): 669–676.

    Article  Google Scholar 

  • Daehler, C.C., and D.R. Strong. 1994. Variable reproductive output among clones of Spartina alterniflora (Poaceae) invading San Francisco Bay, California: The influence of herbivory, pollination, and establishment site. American Journal of Botany 81 (3): 307–313.

    Article  Google Scholar 

  • Derksen-Hooijberg, M., C. Angelini, L.P. Lamers, A. Borst, A. Smolders, J.R. Hoogveld, H. Paoli, J. de Koppel, B.R. Silliman, and T. der Heide. 2018. Mutualistic interactions amplify salt marsh restoration success. Journal of Applied Ecology 55 (1): 405–414.

    Article  Google Scholar 

  • Duarte, C.M., A. Borja, J. Carstensen, M. Elliott, D. Krause-Jensen, and N. Marbà. 2015. Paradigms in the recovery of estuarine and coastal ecosystems. Estuaries and Coasts 38 (4): 1202–1212.

    Article  Google Scholar 

  • Eleuterius, L.N., and J.D. Caldwell. 1984. Flowering phenology of tidal marsh plants in Mississippi. Castanea 1: 172–179.

    Google Scholar 

  • Fang, X. 2002. Reproductive biology of smooth cordgrass (Spartina alterniflora). LSU Master's Theses, 750.

  • Fang, X., P.K. Subudhi, B.C. Venuto, and S.A. Harrison. 2004a. Mode of pollination, pollen germination, and seed set in smooth cordgrass (Spartina alterniflora, Poaceae). International Journal of Plant Sciences 165 (3): 395–401.

    Article  Google Scholar 

  • Fang, X., P.K. Subudhi, B.C. Venuto, S.A. Harrison, and A.B. Ryan. 2004b. Influence of flowering phenology on seed production in smooth cordgrass (Spartina alterniflora Loisel.). Aquatic Botany 80 (2): 139–151.

    Article  Google Scholar 

  • Feher, L.C., M.J. Osland, K.T. Griffith, J.B. Grace, R.J. Howard, C.L. Stagg, N.M. Enwright, K.W. Krauss, C.A. Gabler, R.H. Day, and K. Rogers. 2017. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere 8 (10): e01956.

    Article  Google Scholar 

  • Fine, G. and G. Thomassie. 2000. Vermilion smooth cordgrass. NRCS Publication ID, 5830.

  • Gedan, K.B., B. Silliman, and M. Bertness. 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1 (1): 117–141.

    Article  Google Scholar 

  • Grace, J.B. 1993. The adaptive significance of clonal reproduction in angiosperms: An aquatic perspective. Aquatic Botany 44 (2-3): 159–180.

    Article  Google Scholar 

  • Grime, J. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111 (982): 1169–1194.

    Article  Google Scholar 

  • Hartman, J.M. 1988. Recolonization of small disturbance patches in a New England salt marsh. American Journal of Botany 75 (11): 1625–1631.

    Article  Google Scholar 

  • Jones, S.F., C.L. Stagg, K.W. Krauss, and M.W. Hester. 2016. Tidal saline wetland regeneration of sentinel vegetation types in the Northern Gulf of Mexico: An overview. Estuarine, Coastal and Shelf Science 174: A1–A10.

    Article  Google Scholar 

  • Kettenring, K.M., and D.F. Whigham. 2009. Seed viability and seed dormancy of non-native Phragmites australis in suburbanized and forested watersheds of the Chesapeake Bay, USA. Aquatic Botany 91 (3): 199–204.

    Article  Google Scholar 

  • Kettenring, K.M., and D.F. Whigham. 2018. The role of propagule type, resource availability, and seed source in Phragmites invasion in Chesapeake Bay wetlands. Wetlands. 38 (6): 1259–1268. https://doi.org/10.1007/s13157-018-1034-5.

    Article  Google Scholar 

  • Kettenring, K.M., M.K. McCormick, H.M. Baron, and D.F. Whigham. 2010. Phragmites australis (common reed) invasion in the Rhode River subestuary of the Chesapeake Bay: Disentangling the effects of foliar nutrients, genetic diversity, patch size, and seed viability. Estuaries and Coasts 33 (1): 118–126.

    Article  CAS  Google Scholar 

  • Kettenring, K.M., M.K. McCormick, H.M. Baron, and D.F. Whigham. 2011. Mechanisms of Phragmites australis invasion: Feedbacks among genetic diversity, nutrients, and sexual reproduction. Journal of Applied Ecology 48 (5): 1305–1313.

    Article  Google Scholar 

  • Liu, W., K. Maung-Douglass, D.R. Strong, S.C. Pennings, and Y. Zhang. 2016. Geographical variation in vegetative growth and sexual reproduction of the invasive Spartina alterniflora in China. Journal of Ecology 104 (1): 173–181.

    Article  CAS  Google Scholar 

  • McCormick, M.K., K.M. Kettenring, H.M. Baron, and D.F. Whigham. 2010. Extent and reproductive mechanisms of Phragmites australis spread in brackish wetlands in Chesapeake Bay, Maryland (USA). Wetlands 30 (1): 67–74.

    Article  Google Scholar 

  • Mendelssohn, I.A., and N.L. Kuhn. 2003. Sediment subsidy: Effects on soil-plant responses in a rapidly submerging coastal salt marsh. Ecological Engineering 21 (2-3): 115–128.

    Article  Google Scholar 

  • Mendelssohn, I.A., and K.L. McKee. 1988. Spartina alterniflora die-back in Louisiana: Time-course investigation of soil waterlogging effects. Journal of Ecology 76 (2): 509–521.

    Article  Google Scholar 

  • Mobberley, D.G. 1953. Taxonomy and distribution of the genus Spartina. Iowa State Dissertations, 12794.

  • Mooring, M.T., A.W. Cooper, and E.D. Seneca. 1971. Seed germination response and evidence for height ecophenes in Spartina alterniflora from North Carolina. American Journal of Botany 58 (1): 48–55.

    Article  CAS  Google Scholar 

  • NOAA. 2016. Tides & Currents - Station Info. for Port Fourchon, Belle Pass, LA - Station ID: 8762075. https://tidesandcurrents.noaa.gov/stationhome.html?id=8762075. Accessed May 2017.

  • Obeso, J.R. 2002. The costs of reproduction in plants. New Phytologist 155 (3): 321–348.

    Article  Google Scholar 

  • Osland, M., N. Enwright, and C.L. Stagg. 2014. Freshwater availability and coastal wetland foundation species: Ecological transitions along a rainfall gradient. Ecology 95 (10): 2789–2802.

    Article  Google Scholar 

  • Pennings, S.C., C.K. Ho, C.S. Salgado, K. Więski, N. Davé, A.E. Kunza, and E.L. Wason. 2009. Latitudinal variation in herbivore pressure in Atlantic Coast salt marshes. Ecology 90 (1): 183–195.

    Article  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Core Team. 2016. Nlme: Linear and nonlinear mixed effects models.

  • R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria.

  • Richards, C.L., J. Hamrick, L.A. Donovan, and R. Mauricio. 2004. Unexpectedly high clonal diversity of two salt marsh perennials across a severe environmental gradient. Ecology Letters 7 (12): 1155–1162.

    Article  Google Scholar 

  • Richardson, A.D., A.S. Bailey, E.G. Denny, C.W. Martin, and J. O'Keefe. 2006. Phenology of a northern hardwood forest canopy. Global Change Biology 12 (7): 1174–1188.

    Article  Google Scholar 

  • Richardson, A.D., B.H. Braswell, D.Y. Hollinger, J.P. Jenkins, and S.V. Ollinger. 2009. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecological Applications 19 (6): 1417–1428.

    Article  Google Scholar 

  • Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. 2012. Fiji: An open-source platform for biological-image analysis. Nature Methods 9 (7): 676–682.

    Article  CAS  Google Scholar 

  • Silvertown, J. 2008. The evolutionary maintenance of sexual reproduction: Evidence from the ecological distribution of asexual reproduction in clonal plants. International Journal of Plant Sciences 169 (1): 157–168.

    Article  Google Scholar 

  • Slater, J.A. and R.M. Baranowski. 1990. Lygaeidae of Florida (Hemiptera: Heteroptera), in Florida Dept. Agric and Consumer Serv., Arthropods of Florida and Neighboring Land Areas, Vol. 14, Div. Plant Industry, Gainesville, FL.

  • Slocum, M.G., I.A. Mendelssohn, and N.L. Kuhn. 2005. Effects of sediment slurry enrichment on salt marsh rehabilitation: Plant and soil responses over seven years. Estuaries 28 (4): 519–528.

    Article  CAS  Google Scholar 

  • Sokolov, I.M., X. Chen, R.M. Strecker, and L.M. Hooper-Bùi. 2018. An annotated list of Auchenorrhyncha and Heteroptera collected in the coastal salt marshes of the Mississippi Delta in Louisiana. Psyche: A Journal of Entomology 2018: 1808370.

    Google Scholar 

  • Somers, G.F., and D. Grant. 1981. Influence of seed source upon phenology of flowering of Spartina alterniflora Loisel. and the likelihood of cross pollination. American Journal of Botany 68 (1): 6–9.

    Article  Google Scholar 

  • Sparks, E.L., and J. Cebrian. 2015. Effects of fertilization on grasshopper grazing of northern Gulf of Mexico salt marshes. Estuaries and Coasts 38 (3): 988–999.

    Article  CAS  Google Scholar 

  • Stagg, C.L., and I.A. Mendelssohn. 2010. Restoring ecological function to a submerged salt marsh. Restoration Ecology 18: 10–17.

    Article  Google Scholar 

  • Stephenson, A. 1981. Flower and fruit abortion: Proximate causes and ultimate functions. Annual Review of Ecology and Systematics 12 (1): 253–279.

    Article  Google Scholar 

  • Travis, S.E., and M.W. Hester. 2005. A space-for-time substitution reveals the long-term decline in genotypic diversity of a widespread salt marsh plant, Spartina alterniflora, over a span of 1500 years. Journal of Ecology 93 (2): 417–430.

    Article  Google Scholar 

  • Travis, S.E., C.E. Proffitt, and K. Ritland. 2004. Population structure and inbreeding vary with successional stage in created Spartina alterniflora marshes. Ecological Applications 14 (4): 1189–1202.

    Article  Google Scholar 

  • Wolkovich, E.M., B.I. Cook, and T.J. Davies. 2014. Progress towards an interdisciplinary science of plant phenology: Building predictions across space, time and species diversity. New Phytologist 201 (4): 1156–1162.

    Article  Google Scholar 

  • Wolters, M., A. Garbutt, R.M. Bekker, J.P. Bakker, and P.D. Carey. 2008. Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. Journal of Applied Ecology 45: 904–912.

    Article  Google Scholar 

  • Zuur, A.F., E.N. Ieno, N.J. Walker, A.A. Saveliev, and G.M. Smith. 2009. Mixed effects models and extensions in ecology with R. ed. Gail, M., K. Krickeberg, J.M. Samet, A. Tsiatis, and W. Wong. New York, NY: Spring Science and Business Media.

Download references

Acknowledgements

We would like to thank the Coastal Plant Ecology (J. Willis, M. McCoy) and Ecosystem Ecology (R. James, C. Laurenzano, J. Lesser, J. Nelson) labs at the University of Louisiana at Lafayette, K. Rogers, and O. Chapman for field and lab assistance. B. Chiviou at the USGS Wetland and Aquatic Research Center was instrumental in interpreting RTK data. Special thanks to L. Allain at the USGS WARC for starting us down the phenology path by lending us our first two time-lapse cameras, and to preliminary identification of Ischnodemus. V. Bayless at the LSU AgCenter identified I. conicus and provided copies of a genus-level key which was helpful. All data can be found at ScienceBase (https://doi.org/10.5066/P9HQDP8O). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Funding

This research was partially funded by a grant to SFJ from the Ecology Center at ULL and the Society of Wetland Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott F. Jones.

Additional information

Communicated by Dennis F. Whigham

Electronic supplementary material

ESM 1

(DOCX 6587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, S.F., Yando, E.S., Stagg, C.L. et al. Restoration Affects Sexual Reproductive Capacity in a Salt Marsh. Estuaries and Coasts 42, 976–986 (2019). https://doi.org/10.1007/s12237-019-00552-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00552-y

Keywords

Navigation