Skip to main content
Log in

Seasonal Changes in Submarine Groundwater Discharge and Associated Nutrient Transport into a Tideless Semi-enclosed Embayment (Obama Bay, Japan)

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We carried out a seasonal study of fresh submarine groundwater discharge (SGD) and associated nutrient fluxes in a semi-enclosed bay along a tideless coastal zone using a 222Rn and salinity mass balance model for a whole bay scale. The resulting SGD rates showed large intra-annual variability from 0.05 × 106 to 0.77 × 106 m3 day−1, which were controlled by seasonal changes in the interaction of multiple driving forces, including water table height and seawater level. The highest SGD rate in early spring was induced by heavy snow and low sea level, whereas the seasonal increase in sea level gradually suppressed fresh SGD rates. In summer, an elevated water table may induce higher SGD rates (approximately 0.4 × 106 m3 day−1) regardless of high sea levels. The highest SGD fraction in total terrestrial freshwater fluxes also occurred in summer (>40 %), due to the decreasing rate of surface river discharge. The seasonally averaged SGD rate was 0.36 × 106 m3 day−1. This value was similar to the annual groundwater recharge rate (0.33 × 106 m3 day−1) estimated by the water balance method in the basin. Nutrient fluxes from SGD were approximately 42, 65, and 33 % of all terrestrial fluxes of dissolved inorganic nitrogen, phosphorous, and silicate, respectively. The average fraction of SGD in the water fluxes including terrestrial and oceanic water was low (0.3 %), but that of nutrient fluxes increased to 20–38 %. Higher nutrient concentrations in groundwater compensated for the lower volumetric flux of groundwater. Because primary production was mostly restricted by phosphorous throughout the year, phosphorous-enriched nutrient transport via SGD would play an important role in biological production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Borges, A.V., B. Delille, L.-S. Schiettecatte, F. Gazeau, G. Abril, and M. Frankignoulle. 2004. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, and Thames). Limnology and Oceanography 49: 1630–1641.

    Article  CAS  Google Scholar 

  • Brezinski, M.A. 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology 21: 347–357.

    Article  Google Scholar 

  • Burnett, W.C., and H. Dulaiova. 2003. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. Journal of Environmental Radioactivity 69: 21–35.

    Article  CAS  Google Scholar 

  • Burnett, W.C., P.K. Aggarwal, A. Aureli, H. Bokuniewicz, J.E. Cable, M.A. Charette, E. Kontar, S. Krupa, K.M. Kulkarni, A. Loveless, W.S. Moore, J.A. Oberdorfer, J. Oliveira, N. Ozyurt, P. Povinec, A.M.G. Privitera, R. Rajar, R.T. Ramessur, J. Scholten, T. Stieglitz, M. Taniguchi, and J.V. Turner. 2006. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Science of the Total Environment 367: 498–543.

    Article  CAS  Google Scholar 

  • Burnett, W.C., I.R. Santos, Y. Weinstein, P.W. Swarzenski, and B. Herut. 2007. Remaining uncertainties in the use of Rn-222 as a quantitative tracer of submarine groundwater discharge. In A new focus on groundwater-seawater interactions, ed. W. Sanford, C. Langevin, M. Polemio, and P. Province, 109–118. Perugia: IAHS Publ., 312.

    Google Scholar 

  • Burnett, W.C., R. Peterson, W.S. Moore, and J. de Oliveira. 2008. Radon and radium isotopes as racers of submarine groundwater discharge—results from the Ubatuba, Brazil SGD assessment intercomparison. Estuarine, Coastal and Shelf Science 76: 501–511.

    Article  CAS  Google Scholar 

  • Cable, J.E., W.C. Burnett, J.P. Chanton, and G.L. Weatherly. 1996. Estimating groundwater discharge into the northeastern Gulf of Mexico using radon-222. Earth and Planetary Science Letters 144: 591–604.

    Article  CAS  Google Scholar 

  • Charette, M.A. 2007. Hydrologic forcing of submarine groundwater discharge: insight from a seasonal study of radium isotopes in a groundwater-dominated salt marsh estuary. Limnology and Oceanography 52: 230–239.

    Article  CAS  Google Scholar 

  • Del Amo, Y., O. Le Pape, P. Tréguer, B. Quéguiner, A. Ménesguen, and A. Aminot. 1997. Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of nutrient limitation for the diatom-dominated phytoplankton of the Bay of Brest (France). Marine Ecology Progress Series 161: 213–224.

    Article  Google Scholar 

  • Dulaiova, H., R. Peterson, W.C. Burnett, and D. Lane-Smith. 2005. A multi-detector continuous monitor for assessment of 222Rn in the coastal ocean. Journal of Radioanalytical and Nuclear Chemistry 263: 361–363.

    Article  CAS  Google Scholar 

  • Dulaiova, H., M.E. Gonneea, P.B. Henderson, and M.A. Charette. 2008. Geochemical and physical sources of radon variation in a subterranean estuary—implications for groundwater radon activities in submarine groundwater discharge studies. Marine Chemistry 110: 120–127.

    Article  CAS  Google Scholar 

  • Grossland, C. J., H. H. Kremer, H. J. Lindeboom, J. I. M. Grossland and M. D. A. Le Tissier. 2005. Coastal fluxes in the anthropocence. The IGBP Series, Springer. 231 pp.

  • Gwak, Y.-S., S.-J. Kim, Y.-W. Lee, B.-K. Khim, S.-Y. Hamm, and S.-W. Kim. 2014. Estimation of submarine groundwater discharge in the Il-Gwang watershed using water budget analysis and 222Rn mass balance. Hydrological Processes 28: 3761–3775.

    Article  Google Scholar 

  • Hatta, M., and J. Zhang. 2013. Temporal changes and impacts of submarine fresh groundwater discharge to the coastal environment: a decadal case study in Toyama Bay, Japan. Journal of Geophysical Research, Oceans 118: 2610–2622.

    Article  Google Scholar 

  • Holmes, R.M., A. Aminot, R. Kerouel, B.A. Hooker, and B.J. Peterson. 1999. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 56: 1801–1808.

    Article  CAS  Google Scholar 

  • Hosono, T., M. Ono, W.C. Burnett, T. Tokunaga, M. Taniguchi, and T. Akimichi. 2012. Spatial distribution of submarine groundwater discharge and associated nutrients within a local coastal area. Environmental Science & Technology 46: 5319–5326.

    Article  CAS  Google Scholar 

  • Hu, C., F.E. Muller-Karger, and P.W. Swarzenski. 2006. Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophysical Research Letters 33, L11601. doi:10.1029/2005GL025449.

    Article  Google Scholar 

  • Hwang, D.-W., Y.-W. Lee, and G. Kim. 2005. Large submarine groundwater discharge and benthic eutrophication in Bangdu Bay on volcanic Jeju Island, Korea. Limnology and Oceanography 50: 1393–1403.

    Article  CAS  Google Scholar 

  • Ito, N., and A. Marui. 2010. Distribution of quantities of submarine groundwater discharge on the Japanese Island. Journal of Japanese Association of Hydrological Sciences 40: 1–18 (in Japanese with English abstract).

    Article  Google Scholar 

  • Kasai, A., Y. Kurikawa, M. Ueno, D. Robert, and Y. Yamashita. 2010. Salt-wedge intrusion of seawater and its implication for phytoplankton dynamics in the Yura Estuary, Japan. Estuarine, Coastal and Shelf Science 86: 408–414.

    Article  CAS  Google Scholar 

  • Kayane, I. 1980. Hydrology. Natural Geography Lecture Series 3: 98–102. Daimeidou Publishing Co. Japan (in Japanese).

    Google Scholar 

  • Kelly, R.P., and S.B. Moran. 2002. Seasonal changes in groundwater input to a well-mixed estuary estimated using radium isotopes and implications for coastal nutrient budgets. Limnology and Oceanography 47: 1796–1807.

    Article  Google Scholar 

  • Kim, G., and D.-W. Hwang. 2002. Tidal pumping of groundwater into the coatal ocean revealed from submarine 222Rn and CH4 monitoring. Geophysical Research Letters 29. doi:10.1029/2002GL015093.

  • Kim, G., K.-K. Lee, K.-P. Park, D.-W. Hwang, and H.-S. Yang. 2003. Large submarine groundwater discharge (SGD) from a volcanic island. Geophysical Research Letters 30. doi:10.1029/2003GL018378.

  • Kim, G., J.-W. Ryu, H.-S. Yang, and S.-T. Yun. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by 228Ra and 226Ra isotopes: implications for global silicate fluxes. Earth and Planetary Science Letters 237: 156–166.

    Article  CAS  Google Scholar 

  • Kobayashi, S., and T. Fujiwara. 2008. Long-term variability of shelf water intrusion and its influence on hydrographic and biogeochemical properties of the Seto Inland Sea, Japan. Journal of Oceanography 64: 595–603.

    Article  Google Scholar 

  • Lee, Y.W., D.W. Hwang, G. Kim, W.C. Lee, and H.T. Oh. 2009. Nutrient inputs from submarine groundwater discharge (SGD) in Masan Bay, an embayment surrounded by heavily industrialized cities, Korea. Science of the Total Environment 407: 3181–3188.

    Article  CAS  Google Scholar 

  • Macintyre, S., R. Wannikhof, and J.P. Chanton. 1995. Trace gas exchange across the air-sea interface in freshwater and coastal marine environments. In: Biogenic trace gases: measuring emissions from soil and water, eds. Matson, P.A., Harris, R.C, 52–97. Blackwell Science Ltd.

  • Matsui, A. 2011. Seasonal change in spring discharge of Unjou water and Tsushima’s famous water, Obama City, Fukui Prefecture, Japan. Ecology and Civil Engineering 13: 165–169 (in Japanese with English abstract).

  • Michael, H.A., J.S. Lubetsky, and C.F. Harvey. 2003. Characterizing submarine groundwater discharge: a seepage meter study in Waquoit Bay, Massachusetts. Geophysical Research Letters 30. doi:10.1029/2002GL016000.

  • Michael, H.A., A.E. Mulligan, and C.F. Harvey. 2005. Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436: 1145–1148.

    Article  CAS  Google Scholar 

  • Moore, W.S. 1996. Large groundwater inputs to coastal waters by 226Ra enrichments. Nature 380: 612–614.

    Article  CAS  Google Scholar 

  • Moore, W.S. 2010. The effect of submarine groundwater discharge on the ocean. Annual Review of Marine Science 2: 59–88.

    Article  Google Scholar 

  • Mulligan, A.E., and M.A. Charette. 2006. Intercomparison of submarine groundwater discharge estimates from a sandy unconfined aquifer. Journal of Hydrology 327: 411–425.

    Article  Google Scholar 

  • Nishida, H. 1980. Improved tidal charts for the western part of the North Pacific Ocean. Report of Hydrographic Researches 15: 55–70.

    Google Scholar 

  • Obama City Office. 2014. Investigation interim report for groundwater resources in Obama Plain. http://www1.city.obama.fukui.jp/category/page.asp?Page=2592. Accessed 1 Jul 2014.

  • Pearl, H.W. 1997. Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnology and Oceanography 42: 1154–1165.

    Article  Google Scholar 

  • Redfield, A.C., B.H. Ketchum, and F.A. Richard. 1963. Chapter 2, the influence of organisms on the composition on sea-water. In The sea, vol. 2, ed. M.N. Hill, 26–77. New York: Wiley Interscience.

    Google Scholar 

  • Robinson, M., D. Gallagher, and W. Reay. 1998. Field observations of tidal and seasonal variations in ground water discharge to tidal estuarine surface water. Groundwater Monitoring & Remediation 18: 89–92.

    Google Scholar 

  • Rutkowski, C.M., W.C. Burnett, R.L. Iverson, and J.P. Chanton. 1999. The effect of groundwater seepage on nutrient delivery and seagrass distribution in the Northeastern Gulf of Mexico. Estuaries 22: 1033–1040.

    Article  CAS  Google Scholar 

  • Santos, I.R., N. Dimova, R.N. Peterson, B. Mwashote, J. Chanton, and W.C. Burnett. 2009. Extended time series measurements of submarine groundwater discharge tracers (222Rn and CH4) at a coastal site in Florida. Marine Chemistry 113: 137–147.

    Article  CAS  Google Scholar 

  • Santos, I.R., R. Peterson, B.D. Eyre, and W.C. Burnett. 2010. Significance lateral inputs of fresh groundwater into a stratified tropical estuary: evidence from radon and radium isotopes. Marine Chemistry 121: 37–48.

    Article  CAS  Google Scholar 

  • Sasajima, S., and K. Sakamoto. 1962. Subsurface geology and groundwater of Obama Plain, Fukui Pref., central Japan. Part 2: groundwater of Obama Plain. Memoirs of the Faculty of Liberal Arts, University of Fukui. Ser. II, Natural Science. (in Japanese with English abstract).

  • Sato, T., R. Sugimoto, and O. Tominaga. 2013. Source of sedimentary organic matter in Obama Bay estimated from stable isotope and C/N ratios. Bulletin of the Japanese Society of Fisheries Oceanography 77: 1–9 (in Japanese with English abstract).

    CAS  Google Scholar 

  • Slomp, C.P., and P. van Cappellen. 2004. Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. Journal of Hydrology 295: 64–86.

    Article  CAS  Google Scholar 

  • Statham, P.J. 2012. Nutrients in estuaries—an overview and the potential impacts of climate change. Science of the Total Environment 434: 213–227.

    Article  CAS  Google Scholar 

  • Strickland, J.D.H., and T.R. Parsons. 1972. A practical handbook of seawater analysis. Second edition, Bulletin 167. Ottawa: Fisheries Research Board of Canada.

    Google Scholar 

  • Sugimoto, R., A. Kasai, T. Miyajima, and K. Fujita. 2009. Transport of oceanic nitrate from the continental shelf to the coastal basin in relation to the path of the Kuroshio. Continental Shelf Research 29: 1678–1688.

    Article  Google Scholar 

  • Sugimoto, R., A. Kasai, T. Miyajima, and K. Fujita. 2010. Modeling of phytoplankton production in Ise Bay, Japan: use of nitrogen isotopes to identify the dissolved inorganic nitrogen sources. Estuarine, Coastal and Shelf Science 86: 476–492.

    Article  Google Scholar 

  • Taniguchi, M. 2002. Tidal effects on submarine groundwater discharge into the ocean. Geophysical Research Letters 29. doi:10.1029/2002GL014987.

  • Taniguchi, M., and H. Iwakuma. 2004. Submarine groundwater discharge in Osaka Bay, Japan. Limnology 5: 25–32.

    Article  Google Scholar 

  • Taniguchi, M., W.C. Burnett, J.E. Cable, and J.V. Turner. 2002. Investigation of submarine groundwater discharge. Hydrological Processes 16: 2115–2129.

    Article  Google Scholar 

  • Taniguchi, M., W.C. Burnett, H. Dulaiova, F. Siringan, J. Foronda, G. Wattayakorn, S. Rungsupa, E.A. Kontar, and T. Ishitobi. 2008a. Groundwater discharge as an important land-sea pathway into Manila Bay, Philippines. Journal of Coastal Research 24: 15–24.

    Article  CAS  Google Scholar 

  • Taniguchi, M., T. Ishitobi, J. Chen, S. Onodera, K. Miyaoka, W.C. Burnett, R. Peterson, G. Liu, and Y. Fukushima. 2008b. Submarine groundwater discharge from the Yellow River Delta to the Bohai Sea, China. Journal of Geophysical Research 113. doi:10.1029/2007JC004498.

  • Thornthwaite, C.W. 1948. An approach toward a rational classification of climate. Geographical Review 38: 55–94.

    Article  Google Scholar 

  • Turner, S.M., G. Malin, P.D. Nightingale, and P.S. Liss. 1996. Seasonal variation of dimethyl sulphide in the North Sea and an assessment of fluxes to the atmosphere. Marine Chemistry 54: 552–556.

    Google Scholar 

  • Valiela, I., J. Costa, K. Foreman, J. Teal, B. Howes, and D. Aubrey. 1990. Transport of groundwater-bone nutrients from watersheds and their effects on coastal waters. Biogeochemistry 10: 177–197.

    Article  CAS  Google Scholar 

  • Valiela, I., K. Foreman, M. LaMontagne, D. Hersh, J. Costa, P. Peckol, B. DeMeo-Andreson, C. D’Avanzo, M. Babione, C. Sham, J. Brawley, and K. Lajtha. 1992. Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquiot Bay, Massachusetts. Estuaries 15: 443–457.

    Article  CAS  Google Scholar 

  • Wannikhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, Oceans 97: 7373–7382.

    Article  Google Scholar 

  • Wong, W.W., M.R. Grace, I. Cartwright, M.B. Cardenas, P.B. Zamora, and P.L.M. Cook. 2013. Dynamics of groundwater-derived nitrate and nitrous oxide in a tidal estuary from radon amass balance modeling. Limnology and Oceanography 58: 1689–1706.

    Article  CAS  Google Scholar 

  • Yoder, A.J., L.P. Atkinson, T.N. Lee, H.H. Kim, and C.R. McClain. 1981. Role of Gulf Stream frontal eddies in forming phytoplankton patches on the outer southeastern shelf. Limnology and Oceanography 26: 1103–1110.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the captain and crew of the R/V Aoba of Obama Fisheries High School for their help with the observations. We are grateful to two anonymous reviewers for their helpful comments and suggestions. This work was financially supported by JSPS KAKENHI Grant Number 24658175 and was performed under the support of the Research Project “Human-Environmental Security in Asia-Pacific Ring of Fire: Water-Energy-Food Nexus (R-08-Init)” at the Research Institute for Humanity and Nature (RHIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Sugimoto.

Additional information

Communicated by Isaac Santos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, R., Honda, H., Kobayashi, S. et al. Seasonal Changes in Submarine Groundwater Discharge and Associated Nutrient Transport into a Tideless Semi-enclosed Embayment (Obama Bay, Japan). Estuaries and Coasts 39, 13–26 (2016). https://doi.org/10.1007/s12237-015-9986-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-015-9986-7

Keywords

Navigation