Skip to main content

Advertisement

Log in

Mediterranean Seagrass Growth and Demography Responses to Experimental Warming

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

We experimentally examined the effects of increased temperature on growth and demography of two Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa. Shoots of C. nodosa and seedlings and shoots of P. oceanica were kept in mesocosms for 3 months and exposed to temperatures between 25 and 32 °C encompassing the range of maximum summer seawater temperatures projected for the Mediterranean Sea during the twenty-first century. The response of P. oceanica seedlings to warming was evident with reduced growth rates, leaf formation rates and leaf biomass per shoot. Younger life stages of P. oceanica may therefore be particularly vulnerable to climate change and warming. Leaf formation rates in the shoots of P. oceanica declined with increasing temperature and the lowest population growth (−0.005 day−1) was found at 32 °C. Temperature effects on C. nodosa were variable. Rhizome growth increased with warming (0.07–0.09 cm day−1 °C of warming), whereas other indicators of plant performance (aboveground/belowground biomass, leaf biomass and population growth) appeared to be stimulated by increased temperature to a threshold temperature of around 29–30 °C beyond which they declined. P. oceanica and C. nodosa are likely to be negatively impacted by the effects of global warming over the next century and climate change poses a significant challenge to seagrasses and may stress these key habitat-forming species that are already suffering losses from anthropogenic impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balestri, E., and S. Bertini. 2003. Growth and development of Posidonia oceanica seedlings treated with plant growth regulators: possible implications for meadow restoration. Aquatic Botany 76: 291–297.

    Article  CAS  Google Scholar 

  • Balestri, E., L. Piazzi, and F. Cinelli. 1998. Survival and growth of transplanted and natural seedlings of Posidonia oceanica (L.) Delile in a damaged coastal area. Journal of Experimental Marine Biology and Ecology 228: 209–225.

    Article  Google Scholar 

  • Bay, D. 1984. A field study of the growth dynamics and productivity of Posidonia oceanica (L.) Delile in Calvi Bay, Corsica. Aquatic Botany 20: 43–64.

    Article  Google Scholar 

  • Bethoux, J.P., B. Gentili, and J. Raunet. 1990. Warming trend in the Western Mediterranean deep water. Nature 347: 660–662.

    Article  Google Scholar 

  • Borum, J., O. Pedersen, and T.M. Greve. 2004. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. Journal of Ecology 93: 148–158.

    Article  Google Scholar 

  • Boudouresque, C.F., G. Bernard, G. Pergent, A. Shili, and M. Verlaque. 2009. Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Botanica Marina 52: 395–418.

    Article  Google Scholar 

  • Campbell, S.J., L.J. McKenzie, and S.P. Kerville. 2006. Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. Journal of Experimental Marine Biology and Ecology 330: 455–468.

    Article  CAS  Google Scholar 

  • Cancemi, G., M.C. Buia, and L. Mazzella. 2002. Structure and growth dynamics of Cymodocea nodosa meadows. Scientia Marina 66: 365–373.

    Google Scholar 

  • Coma, R., M. Ribes, E. Serrano, E. Jiménez, J. Salat, and J. Pascual. 2009. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proceedings of the National Academy of Sciences of the United States of America 106: 6176–6181.

    Article  CAS  Google Scholar 

  • Díaz-Almela, E., N. Marbà, and C.M. Duarte. 2007. Consequences of Mediterranean warming events in seagrass (Posidonia oceanica) flowering records. Global Change Biology 13: 224–235.

    Article  Google Scholar 

  • Díaz-Almela E., N. Marbà, E. Álvarez, R. Santiago, M. Holmer, A. Grau, S. Mirto, R. Danovaro, A. Petrou, M. Argyrou, I. Karakassis, and C.M. Duarte. 2008. Benthic input rates predict seagrass (Posidonia oceanica) fish farm-induced decline. Marine Pollution Bulletin 56: 1332–1342

    Google Scholar 

  • Díaz-Almela, E., N. Marbà, R. Martínez, R. Santiago, and C.M. Duarte. 2009. Seasonal dynamics of Posidonia oceanica in Magalluf Bay (Mallorca, Spain): temperature effects on seagrass mortality. Limnology and Oceanography 54: 2170–2182.

    Article  Google Scholar 

  • Drew, E.A. 1978. Factors affecting photosynthesis and its seasonal variation in the seagrasses Cymodocea nodosa (Ucria) Aschers, and Posidonia oceanica (L.) Delile in the Mediterranean. Journal of Experimental Marine Biology and Ecology 31: 173–194.

    Article  CAS  Google Scholar 

  • Drew, E.A. 1979. Physiological aspects of primary production in seagrasses. Aquatic Botany 7: 139–150.

    Article  CAS  Google Scholar 

  • Duarte, C.M., and C.L. Chiscano. 1999. Seagrass biomass and production: a reassessment. Aquatic Botany 65: 159–174.

    Article  Google Scholar 

  • Frederiksen, M.S., M. Holmer, E. Díaz-Almela, N. Marbà, and C.M. Duarte. 2007. Sulfide invasion in the seagrass Posidonia oceanica at Mediterranean fish farms: assessment using stable sulfur isotopes. Marine Ecology Progress Series 345: 93–104.

    Article  CAS  Google Scholar 

  • García R., M. Sánchez-Camacho, N. Marbà, C.M. Duarte. 2012. Experimental warming enhances Mediterranean seagrass (Posidonia oceanica) sulphide intrusion (in press).

  • Greve, T.M., J. Borum, and O. Pedersen. 2003. Meristematic oxygen variability in eelgrass (Zostera marina). Limnology and Oceanography 48: 210–216.

    Article  Google Scholar 

  • Hemminga, M., and C.M. Duarte. 2000. Seagrass ecology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hughes, T.P., A.H. Baird, D.R. Bellwood, M. Card, S.R. Connolly, C. Folke, R. Grosberg, O. Hoegh-Guldberg, J.B.C. Jackson, J. Kleypas, J.M. Lough, M. Nyström, S.R. Palumbi, J.M. Pandolfi, B. Rosen, and J. Roughgarden. 2003. Climate change, human impacts and the resilience of coral reefs. Science 301: 929–933.

    Article  CAS  Google Scholar 

  • IPCC. 2007. Climate change 2007: the physical science basis—summary for policymakers contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Geneva: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Jordà G, N. Marbà, and C.M. Duarte. (2012). Mediterranean seagrass vulnerable to regional climate warming. Nature Climate Change doi:10.1038/nclimate1533.

  • Kendrick, G., N. Marbà, and C.M. Duarte. 2005. Modelling formation of complex topography by the seagrass Posidonia oceanica. Estuarine, Coast and Shelf Science 65: 717–725.

    Article  Google Scholar 

  • Lee, K.-S., S.R. Park, and J.-B. Kim. 2005. Production dynamics of the eelgrass, Zostera marina in two bay systems on the south coast of the Korean peninsula. Marine Biology 147: 1091–1108.

    Article  Google Scholar 

  • Lee, K.-S., S.R. Park, and Y.K. Kim. 2007. Effects of irradiance, temperature and nutrients on growth dynamics of seagrasses: a review. Journal of Experimental Marine Biology and Ecology 350: 144–175.

    Article  Google Scholar 

  • Marbà, N., and C.M. Duarte. 1997. Interannual changes in seagrass (Posidonia oceanica) growth and environmental change in the Spanish Mediterranean littoral zone. Limnology and Oceanography 42: 800–810.

    Article  Google Scholar 

  • Marbà, N., and C.M. Duarte. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Global Change Biology 16: 2366–2375.

    Article  Google Scholar 

  • Marbà, N., C.M. Duarte, J. Cebrián, M.E. Gallegos, B. Olesen, and K. Sand-Jensen. 1996. Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline. Marine Ecology Progress Series 137: 203–213.

    Article  Google Scholar 

  • Marbà, N., C.M. Duarte, E. Díaz-Almela, J. Terrados, E. Álvarez, R. Martínez, R. Santiago, E. Gacia, and A.M. Grau. 2005. Direct evidence of imbalanced seagrass (Posidonia oceanica) shoot population dynamics along the Spanish Mediterranean. Estuaries 28: 51–60.

    Article  Google Scholar 

  • Marbà, N., M. Calleja, C.M. Duarte, E. Álvarez, E. Díaz-Almela, and M. Holmer. 2007. Iron additions reduce sulfide intrusion and reverse seagrass (Posidonia oceanica) decling in carbonate sediments. Ecosystems 10: 745–756.

    Article  Google Scholar 

  • Marsh, J.A., W.C. Dennison, and R.S. Alberte. 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina L.). Journal of Experimental Marine Biology and Ecology 101: 257–267.

    Article  Google Scholar 

  • Metaxas, D.A., A. Bartzokas, and A. Vitsas. 1991. Temperature fluctuations in the Mediterranean area during the last 120 years. International Journal of Climatology 11: 897–908.

    Article  Google Scholar 

  • Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56: 987–996.

    Article  Google Scholar 

  • Peduzzi, P., and A. Vukovič. 1990. Primary production of Cymodocea nodosa in the Gulf of Trieste (Northern Adriatic Sea): a comparison of methods. Marine Ecology Progress Series 64: 197–207.

    Article  Google Scholar 

  • Pérez, M., and J. Romero. 1992. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquatic Botany 43: 51–62.

    Article  Google Scholar 

  • Pérez, M., C.M. Duarte, J. Romero, K. Sand-Jensen, and T. Alcoverro. 1994. Growth plasticity in Cymodocea nodosa stands: the importance of nutrient supply. Aquatic Botany 47: 249–264.

    Article  Google Scholar 

  • Piazzi, L., S. Acunto, and F. Cinelli. 1999. In situ survival and development of Posidonia oceanica (L.) Delile seedlings. Aquatic Botany 63: 103–112.

    Article  Google Scholar 

  • Sanchez, E., C. Gallardo, M.A. Gaertner, A. Arribas, and M. Castro. 2004. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change 44: 163–180.

    Article  Google Scholar 

  • Short, F., and C.M. Duarte. 2001. Methods for the measurement of seagrass growth and production. In Global seagrass research methods, ed. Short and Coles, 155–182. Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Short, F.T., and H.A. Neckles. 1999. The effects of global climate change on seagrasses. Aquatic Botany 63: 169–196.

    Article  Google Scholar 

  • Valiela, I. 2006. Global coastal change. London: Blackwell.

    Google Scholar 

  • Vargas-Yáñez M., M.C. García-Martínez, F. Moya-Ruiz, E. Tel, G. Parilla, F. Plaza, A. Lavín. 2007. Cambio Climático en el Mediterráneo español. Instituto Español de Oceanografía, Ministerio de Educación y Ciência

  • Watson, R.T., M.C. Zinyowera, and R.H. Moss (eds.). 1996. Climate change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of working group II to the second assessment of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Waycott, M., C.M. Duarte, T.J.B. Carruthers, et al. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 12377–12381.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the projects Southern European Seas: Assessing and Modelling Ecosystem Changes (European Union, 6th Framework Programme, contract no.036949), Marinera (CTM2008-04183-E) and MEDEICG (Spanish Ministry of Science, reference no. CTM2009-07013). We thank Rosa Garcia Novoa and Olga Carnicer for their help with the mesocosms and the Palma Aquarium for providing access to their facilities. YSO was supported by a funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. [254297].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ylva S. Olsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, Y.S., Sánchez-Camacho, M., Marbà, N. et al. Mediterranean Seagrass Growth and Demography Responses to Experimental Warming. Estuaries and Coasts 35, 1205–1213 (2012). https://doi.org/10.1007/s12237-012-9521-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-012-9521-z

Keywords

Navigation