Skip to main content

Advertisement

Log in

Source Apportionment of PAHs Using Two Mathematical Models for Mangrove Sediments in Shantou Coastal Zone, China

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Thirty-five surface sediment samples collected from three mangroves in Shantou coastal zone, China in 2007 were analyzed for a suite of polycyclic aromatic hydrocarbons (PAHs). Two mathematical models were used to determine the profiles and relative contributions of PAH sources to the mangroves. The two models are principal component analyses (PCA) with multiple linear regression analysis (MLR) and positive matrix factorization (PMF). Both models identified five factors and gave excellent correlation coefficients between predicted and measured levels of 16 PAH compounds, but the results had some differences. The PAH contribution rate attributed to vehicular emission sources identified by PCA-MLR was 37.20%, but the rate identified by PMF was only 12.37%. The main sources identified by PCA-MLR were combination of biomass/coal combustion and vehicular emissions, whereas the main source identified by PMF was only biomass/coal combustion. The PMF analysis was the preferred model for the paper data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdi, H. 2003. Factor rotations in factor analyses. In Encyclopedia of social sciences research methods, ed. M. Lewis-Beck, A. Bryman, and T. Futing. Thousand Oaks: Sage.

    Google Scholar 

  • Almeida, S.M., C.A. Pio, M.C. Freitas, M.A. Reis, and M.A. Trancoso. 2006. Approaching PM (2.5) and PM (2.5−10) source apportionment by mass balance analysis, principal component analysis and particle size distribution. Science of the Total Environment 368: 663–674.

    Article  CAS  Google Scholar 

  • Anttila, P., P. Paatero, U. Tapper, and O. Jarvinen. 1995. Source identification of bulk wet deposition in Finland by positive matrix factorization. Atmospheric Environment 29: 1705–1718.

    Article  CAS  Google Scholar 

  • Bi, X., Y. Feng, J. Wu, Y. Wang, and T. Zhu. 2007. Source apportionment of PM10 in six cities of northern China. Atmospheric Environment 21: 903–912.

    Article  Google Scholar 

  • Brown, S.G., A. Frankel, and H.R. Hafner. 2007. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization. Atmospheric Environment 41: 227–237.

    Article  CAS  Google Scholar 

  • Bruno, P., M. Caselli, G. de Gennaro, and A. Traini. 2001. Source apportionment of gaseous atmospheric pollutants by means of an absolute principal component scores (APCS) receptor model. Freseniuś Journal of Analytical Chemistry 371: 1119–1123.

    Article  CAS  Google Scholar 

  • Budzinski, H., I. Jones, J. Bellocq, C. Pierard, and P. Garrigues. 1997. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry 58: 85–97.

    Article  CAS  Google Scholar 

  • Bzdusek, P.A., J. Lu, and E.R. Christensen. 2006. PCB congeners and dechlorination in sediments of Sheboygan River, Wisconsin, determined by matrix factorization. Environmental Science and Technology 40: 1120–1129.

    Article  Google Scholar 

  • Chen, Y.J., G.Y. Sheng, X.H. Bi, and J.M. Fu. 2005. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environmental Science and Technology 39: 1861–1867.

    Article  CAS  Google Scholar 

  • Christensen, E.R., and P.A. Bzdusek. 2005. PAHs in sediments of the Black River and the Ashtabula River, Ohio: source apportionment by factor analysis. Water Research 39: 511–524.

    Article  CAS  Google Scholar 

  • Dou, H., B. Chang, C.Z. Wei, W.X. Qiu, S.Z. Liu, Y. Liu, W.X. Liu, and S. Tao. 2007. Emission factors of PAHs in residential coal combustion in China. Acta Scientiae Circumstantiae 27: 1783–1788.

    CAS  Google Scholar 

  • Fang, G.C., Y.S. Wu, C.N. Chang, and T.T. Ho. 2006. A study of polycyclic aromatic hydrocarbons concentrations and source identifications by methods of diagnostic ratio and principal component analysis at Taichung chemical Harbor near Taiwan Strait. Chemosphere 64: 1233–1242.

    Article  CAS  Google Scholar 

  • Gschwend, P.M., and R.A. Hites. 1981. Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the northeastern United States. Geochimica et Cosmochimica Acta 45: 2395–2367.

    Article  Google Scholar 

  • Guo, H., T. Wang, and P.K. Louie. 2004. Source apportionment of ambient non-methane hydrocarbons in Hong Kong: application of a principal component analysis/absolute principal component scores (PCA/APCS) receptor model. Environmental Pollution 129(489–4): 98.

    Google Scholar 

  • Harrison, R.M., D.J.T. Smith, and L. Luhana. 1996. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. Environmental Science and Technology 30: 825–832.

    Article  CAS  Google Scholar 

  • Hopke, P. 1985. Receptor modeling in environmental chemistry. New York: Wiley-Interscience.

    Google Scholar 

  • Jenkins, B.M., A.D. Jones, S.Q. Turn, and R.B. Williams. 1996. Emission factors for polycyclic aromatic hydrocarbons from biomass burning. Environmental Science and Technology 30: 2462–2469.

    Article  CAS  Google Scholar 

  • Keeler, G.J., M.S. Landis, G. Norris, E.M. Christianson, and J.T. Dvonch. 2006. Source of mercury wet deposition in Eastern Ohio, USA. Environmental Science and Technology 40: 5874–5881.

    Article  CAS  Google Scholar 

  • Khalili, N.R., P.A. Scheff, and T.M. Holsen. 1995. PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmospheric Environment 29: 533–542.

    Article  CAS  Google Scholar 

  • Kim, M., S.R. Deshpande, and C. Crist. 2007. Source apportionment of fine particulate matter (PM2.5) at a rural Ohio River Valley site. Atmospheric Environment 41: 9231–9234.

    Article  CAS  Google Scholar 

  • Kulkarni, P., and C. Venkataraman. 2000. Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmospheric Environment 34: 2785–2790.

    Article  CAS  Google Scholar 

  • Kumata, H., M. Uchida, E. Sakuma, T. Uchida, K. Fujiwara, M. Tsuzuki, M. Youneda, and Y. Shibata. 2006. Compound class specific 14C analysis of polycyclic aromatic hydrocarbons associated with PM10 and PM1.1 aerosols from residential areas of suburban Tokyo. Environmental Science and Technology 40: 3474–3480.

    Article  CAS  Google Scholar 

  • Larsen 3rd, R.K., and J.E. Baker. 2003. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environmental Science and Technology 37: 1873–1881.

    Article  CAS  Google Scholar 

  • Lee, P.K., J.R. Brook, E. Dabek-Zlotorzynska, and S.A. Mabury. 2003. Identification of the major sources contributing to PM2.5 observed in Toronto. Environmental Science and Technology 37: 4831–4840.

    Article  CAS  Google Scholar 

  • Lee, R.G.M., P. Coleman, J.L. Jones, and R. Lohmann. 2005. Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs, and PM10 from the domestic burning of coal and wood in the U.K. Environmental Science and Technology 39: 1436–1447.

    Article  CAS  Google Scholar 

  • Lin, P. 1990. In Mangrove research papers (I), ed. P. Lin, 1. China: Xiamen University Press.

    Google Scholar 

  • Mandalakis, M., O. Gustafsson, T. Alsberg, A.L. Egeback, C.M. Reddy, L. Xu, J. Klanova, I. Holoubek, and E.G. Stephanou. 2005. Contribution of biomass burning to atmospheric polycyclic aromatic hydrocarbons at three European background sites. Environmental Science and Technology 39: 2976–2982.

    Article  CAS  Google Scholar 

  • Motelay-Massei, A., T. Harner, M. Shoeib, M. Diamond, G. Stern, and B. Rosenberg. 2005. Using passive air samplers to assess urban–rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs, and organochlorine pesticides. Environmental Science and Technology 39: 5763–5773.

    Article  CAS  Google Scholar 

  • Norris, G, R. Vedantham, K. S. Wade, S. G. Brown, J. D. Prouty, and C. Foley. 2008. EPA positive matrix factorization (PMF) 3.0 fundamentals and user guide. Prepared for the U.S. Environmental Protection Agency, Washington, D.C., by the National Exposure Research Laboratory, Research Triangle Park, Sonoma Technology, Inc., Petaluma, CA, and Lockheed Martin Systems Engineering Center, Arlington, VA, EP-D-05-004; STI-907045.05-3347-UG, October.

  • Paatero, P. 1997. Least squares formulation of robust non-negative factor analysis. Chemometric and Intelligent Laboratory Systems 37: 23–35.

    Article  CAS  Google Scholar 

  • Paatero, P. 1999. The multilinear engine: a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. Journal of Computational and Graphical Statistics 8: 854–888.

    Article  Google Scholar 

  • Paatero, P., and U. Tapper. 1993. Analysis of different modes of factor analysis as least squares fit problems. Chemometric and Intelligent Laboratory Systems 18: 183–194.

    Article  CAS  Google Scholar 

  • Paatero, P., and U. Tapper. 1994. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5: 111–126.

    Article  Google Scholar 

  • Philip, R.P. 2007. The emergence of stable isotopes in environmental and forensic geochemistry studies: A review. Environmental Chemistry Letters 5: 57–66.

    Article  Google Scholar 

  • Pio, C.A., C.A. Alves, and A.C. Duarte. 2001. Identification, abundance and origin of atmospheric organic particulate matter in a Portuguese rural area. Atmospheric Environment 35: 1365–1375.

    Article  CAS  Google Scholar 

  • Poirot, R.L., P.R. Wishinski, P.K. Hopke, and A.V. Polissar. 2001. Comparative application of multiple receptor methods to identify aerosol sources in northern vermont. Environmental Science and Technology 35: 4622–4636.

    Article  CAS  Google Scholar 

  • Polissar, A.V., P. Paatero, P.K. Hopke, W.C. Malm, and J.F. Sisler. 1998. Atmospheric aerosol over Alaska 2. Elemental composition and sources. Journal of Geophysical Research 103: 19045–19057.

    Article  CAS  Google Scholar 

  • Ramadan, Z., B. Eickhout, X. Song, L.M.C. Buydens, and P.K. Hopke. 2003. Comparison of positive matrix factorization and multilinear engine for the source apportionment of particulate pollutants. Chemometric and Intelligent Laboratory Systems 66: 15–28.

    Article  CAS  Google Scholar 

  • Reinikainen, S.P., P. Laine, P. Minkkinen, and P. Paatero. 2001. Factor analytical study on water quality in Lake Saimaa, Finland. Freseniuś Journal of Analytical Chemistry 369: 727–732.

    Article  CAS  Google Scholar 

  • Sicre, M.A., J.C. Marty, A. Saliot, X. Aparicio, J. Grimalt, and J. Alebaigés. 1987. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmospheric Environment 21: 2247–2259.

    Article  CAS  Google Scholar 

  • Simcik, M.F., S.J. Eisenreich, and P.J. Lioy. 1999. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmospheric Environment 33: 5071–5079.

    Article  CAS  Google Scholar 

  • Soclo, H.H., P. Garrigues, and M. Eward. 2000. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin 40: 387–396.

    Article  CAS  Google Scholar 

  • Sofowote, U.M., B.E. McCarry, and C.H. Marvin. 2008. Source apportionment of pAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods. Environmental Science and Technology 42: 6007–6014.

    Article  CAS  Google Scholar 

  • Song, Y., Y.H. Zhang, S.D. Xie, L.M. Zeng, M. Zheng, L.G. Salmon, M. Shao, and S. Slanina. 2006. Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmospheric Environment 40: 1526–1537.

    Article  CAS  Google Scholar 

  • Sporstol, S., N. Gjos, R.G. Lichtenthaler, K.O. Gustavsen, K. Urdal, F. Oreld, and J. Skei. 1983. Source identification of aromatic hydrocarbons in sediments using GC/MS. Environmental Science and Technology 17: 282–286.

    Article  CAS  Google Scholar 

  • Tam, N.F.Y., L. Ke, X.H. Wang, and Y.S. Wong. 2001. Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environmental Pollution 114: 255–263.

    Article  CAS  Google Scholar 

  • Vaccaro, S., E. Sobiecka, S. Contini, G. Locoro, G. Free, and B.M. Gawlik. 2007. The application of positive matrix factorization in the analysis, characterization and detection of contaminated soils. Chemosphere 69: 1055–1063.

    Article  CAS  Google Scholar 

  • Wang, Z., J. Chen, X. Qiao, P. Yang, F. Tian, and L. Huang. 2007. Distribution and sources of polycyclic aromatic hydrocarbons from urban to rural soils: a case study in Dalian, China. Chemosphere 68: 965–971.

    Article  CAS  Google Scholar 

  • Yunker, M.B., R.W. Macdonald, R. Vingarzan, R.H. Mitchell, D. Goyette, and S. Sylvestre. 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33: 489–515.

    Article  CAS  Google Scholar 

  • Zhou, L., E. Kim, P.K. Hopke, C.O. Stanier, and S. Pandis. 2004. Advanced factor analysis on pittsburgh particle size-distribution data. Aerosol Science and Technology 38: 118–132.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this project was provided through UNEP/GEF Reversing Environmental Degradation Trends in South China Sea and Gulf of Thailand (UNEP/GEF GF/3010-07-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guizhu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Q., Wang, H. & Chen, G. Source Apportionment of PAHs Using Two Mathematical Models for Mangrove Sediments in Shantou Coastal Zone, China. Estuaries and Coasts 34, 950–960 (2011). https://doi.org/10.1007/s12237-011-9397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-011-9397-3

Keywords

Navigation