Skip to main content

Advertisement

Log in

Contribution of a Dense Population of the Brittle Star Acrocnida brachiata (Montagu) to the Biogeochemical Fluxes of CO2 in a Temperate Coastal Ecosystem

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The production of organic matter and calcium carbonate by a dense population of the brittle star Acrocnida brachiata (Echinodermata) was calculated using demographic structure, population density, and relations between the size (disk diameter) and the ash-free dry weight (AFDW) or the calcimass. During a 2-year survey in the Bay of Seine (Eastern English Channel, France), organic production varied from 29 to 50 gAFDW m−2 year−1 and CaCO3 production from 69 to 104 gCaCO3 m−2 year−1. Respiration was estimated between 1.7 and 2.0 molCO2 m−2 year−1. Using the molar ratio (ψ) of CO2 released: CaCO3 precipitated, this biogenic precipitation of calcium carbonate would result in an additional release between 0.5 and 0.7 molCO2 m−2 year−1 that represented 23% and 26% of total CO2 fluxes (sum of calcification and respiration). The results of the present study suggest that calcification in temperate shallow environments should be considered as a significant source of CO2 to seawater and thus a potential source of CO2 to the atmosphere, emphasizing the important role of the biomineralization (estimated here) and dissolution (endoskeletons of dead individuals) in the carbon budget of temperate coastal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Balch, W.M., P.M. Holligan, and K.A. Kilpatrick. 1992. Calcification, photosynthesis and growth of the bloom-forming coccolithophore, Emiliania huxleyi. Continental Shelf Research 12: 1353–1374.

    Article  Google Scholar 

  • Balch, W.M., D. Drapeau, B. Bowler, and E. Booth. 2007. Prediction of pelagic calcification rates using satellite measurements. Deep Sea Research II 54: 478–495.

    Article  Google Scholar 

  • Bamber, R.N. 1990. The effects of acidic seawater on three species of lamellibranch molluscs. Journal of Experimental Marine Biology and Ecology 143: 181–191.

    Article  Google Scholar 

  • Beukema, J.J. 1980. Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: I. The tellinid bivalve Macoma balthica. Netherland Journal of Sea Research 14: 323–339.

    Article  CAS  Google Scholar 

  • Beukema, J.J. 1982. Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: II. The edible cockle Cerastoderma edule. Netherland Journal of Sea Research 15: 391–405.

    Article  Google Scholar 

  • Bhattacharya, C.G. 1967. A simple method of resolution of a distribution into Gaussian components. Biometrics 23: 115–135.

    Article  CAS  Google Scholar 

  • Borges, A.V. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28(1): 3–27.

    Article  CAS  Google Scholar 

  • Borges, A.V. and M. Frankignoulle. 2003. Distribution of surface carbon dioxide and air–sea exchange in the English Channel and adjacent areas. Journal of Geophysical Research 108(C5): 3140. doi:10.1029/2000JC000571.

    Article  CAS  Google Scholar 

  • Borges, A.V., B. Delille, and M. Frankignoulle. 2005. Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystems count. Geophysical Research Letters 32: L14601. doi:10.1029/2005GL023053.

    Article  CAS  Google Scholar 

  • Borges, A.V., L.-S. Schiettecatte, G. Abril, B. Delille, and F. Gazeau. 2006. Carbon dioxide in European coastal waters. Estuarine, Coastal and Shelf Science 70: 375–387.

    Article  CAS  Google Scholar 

  • Bourgoin, A. and M. Guillou. 1990. Variations in the reproductive cycle of Acrocnida brachiata (Echinodermata: Ophiuroidea) according to environment in the Bay of Douarnenez (Brittany). Journal of the Marine Biological Association of the United Kingdom 70: 57–66.

    Article  Google Scholar 

  • Bourgoin, A., M. Guillou, and M. Glémarec. 1991. Environmental instability and demographic variability in Acrocnida brachiata (Echinodermata: Ophiuroidea) in Douarnenez Bay (Brittanu: France). P.S.Z.N.I.: Marine Ecology 12: 89–104.

    Article  Google Scholar 

  • Buitenhuis, E.T., J. van Bleijswijk, D. Bakker, and M. Veldhuis. 1996. Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea. Marine Ecology Progress Series 143: 271–282.

    Article  CAS  Google Scholar 

  • Caldeira, K. and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365–365.

    Article  CAS  Google Scholar 

  • Chauvaud, L., J.K. Thompson, J.E. Cloern, and G. Thouzeau. 2003. Clams as CO2 generators: The Potamocorbula amurensis example in San Francisco Bay. Limnology and Oceanography 48: 2086–2092.

    CAS  Google Scholar 

  • Chave, K.E. 1967. Recent carbonate sediments—an unconventional view. Journal of Geological Education 15: 200–204.

    CAS  Google Scholar 

  • Chisholm, J.R.M. and D.J. Barnes. 2005. Anomalies in coral reef community metabolism and their potential importance in the reef CO2 source-sink debate. Proceedings of the National Academy of Sciences of the United States of America 95: 6566–6569.

    Article  Google Scholar 

  • Crisp, D. 1984. Energy flow measurements. In Methods for the study of marine benthos, 2nd ed, ed. N.A. Holme and A.D. McIntyre, 387. Oxford: Blackwell.

    Google Scholar 

  • Cugier, P., A. Menesguen, and J.F. Guillaud. 2005. Three dimensional (3D) ecological modelling of the Bay of Seine (English Channel, France). Journal of Sea Research 54: 104–124.

    Article  Google Scholar 

  • Davoult, D. 1989. Structure démographique et production de la population d'Ophiothrix fragilis (Abildgaard) du détroit du Pas-de-Calais (France). Actes du VIème séminaire international sur les Echinodermes actuels et fossiles. Vie Marine, Hors Série 10: 116–127.

    Google Scholar 

  • Farmanfarmaian, A. 1966. The respiratory physiology of echinoderms. In Physiology in Echinodermata, ed. R.A. Boolootian, 245–265. New York: Interscience.

    Google Scholar 

  • Frankignoulle, M. 1994. A complete set of buffer factors for acid/base CO2 system in seawater. Journal of Marine Systems 5: 111–118.

    Article  Google Scholar 

  • Frankignoulle, M., M. Pichon, and J.-P. Gattuso. 1995. Aquatic calcification as a source of carbon dioxide. In Carbon sequestration in the biosphere, ed. M.A. Beran, 265–271. Heidelberg: Springer.

    Google Scholar 

  • Garcia-Soto, C., E. Fernandez, R.D. Pingree, and D.S. Harbour. 1995. Evolution and structure of a shelf coccolithophore bloom in the Western English Channel. Journal of Plankton Research 17: 2011–2036.

    Article  Google Scholar 

  • Gattuso, J.-P., M. Pichon, B. Delesalle, and M. Frankignoulle. 1993. Community metabolism and air-sea CO2 fluxes in a coral reef ecosystem (Moorea, French Polynesia). Marine Ecology Progress Series 96: 259–267.

    Article  Google Scholar 

  • Gattuso, J.-P., M. Pichon, B. Delesalle, C. Canon, and M. Frankignoulle. 1996. Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air–sea CO2 disequilibrium. Marine Ecology Progress Series 145: 109–121.

    Article  Google Scholar 

  • Gattuso, J.-P., M. Frankignoulle, and R. Wollast. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Revue of Ecology and Systematics 29: 405–434.

    Article  Google Scholar 

  • Gattuso, J.-P., D. Allemand, and M. Frankignoulle. 1999. Photosynthesis and calcification at cellular, organismal and community levels on coral reefs: A review on interactions and control by carbonate chemistry. American Zoologist 39: 160–183.

    CAS  Google Scholar 

  • Gazeau, F., C. Quiblier, J.M. Jansen, J.-P. Gattuso, J.J. Middelburg, and C.H.R. Heip. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34: L07603. doi:10.1029/2006GL028554.

    Article  CAS  Google Scholar 

  • Gentil, F., and B. Zakardjian. 1990. Reproductive cycle of the ophiuroid Acrocnida brachiata (Montagu) in the Bay of Seine (English Channel). In Echinoderm research. Proceedings of the 2nd European Conference on Echinoderms, eds. De Ridder, Dubois, Lahaye & Jangoux, Brussels, Belgium, 18–21 September 1989. Balkema, Rotterdam, pp. 83–89.

  • Gentil, F., J.-P. Irlinger, B. Elkaïm, and F. Proniewski. 1986. Premières données sur la dynamique du peuplement macrobenthique des sables fins envasés à Abra alba de la Baie de Seine orientale. In La Baie de Seine—Colloque national du CNRS, Caen, 1985, ed. L. Cabioch, 409–420. Actes colloques Ifremer 4.

  • Gollety, C., F. Gentil, and D. Davoult. 2008. Secondary production, calcification and CO2 fluxes in the cirripedes Chthamalus montagui and Elminius modestus. Oecologia 44: 1146–1153.

    Google Scholar 

  • Gros, P. and J.-C. Cochard. 1978. Biologie de Nyctiphanes couchii (Crustacea: Euphausiacea) dans le secteur nord du golfe de Gascogne. Annales de l’Institut Océanographique (Paris) 54: 25–46.

    Google Scholar 

  • Guille, A. 1964. Contribution à l’étude de la systématique et de l’écologie d’Ophiothrix quinquemaculata (Delle Chiaje). Vie et Milieu 15: 243–308.

    Google Scholar 

  • Holligan, P.M., E. Fernández, W. Aiken, W.M. Balch, P. Boyd, P.H. Burkill, M. Finch, S.B. Groom, G. Malin, K. Muller, D.A. Purdie, C. Robinson, C.C. Trees, S.M. Turner, and P. van der Wal. 1993. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochemical Cycles 7: 879–900.

    Article  CAS  Google Scholar 

  • Martin, S., G. Thouzeau, L. Chauvaud, F. Jean, and L. Guérin. 2006. Respiration, calcification, and excretion of the invasive slipper limpet, Crepidula fornicata L.: Implications for carbon, carbonate and nitrogen fluxes in affected areas. Limnology and Oceanography 51: 1996–2007.

    Article  CAS  Google Scholar 

  • Migné, A. and D. Davoult. 1997. Carbon-dioxide production and metabolic parameters in the ophiuroid Ophiothrix fragilis. Marine Biology 127: 699–704.

    Article  Google Scholar 

  • Migné, A., D. Davoult, and J.-P. Gattuso. 1998. Calcium carbonate production of a dense population of the brittle star Ophiothrix fragilis (Echinodermata: Ophiuroidea): Role in the carbon cycle of a temperate coastal ecosystem. Marine Ecology Progress Series 173: 305–308.

    Article  Google Scholar 

  • Milliman, J.D. 1993. Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state. Global Biogeochemical Cycles 7: 927–957.

    Article  CAS  Google Scholar 

  • Muths, D., D. Davoult, F. Gentil, and D. Jollivet. 2006. Incomplete cryptic speciation between intertidal and subtidal morphs of Acrocnida brachiata (Echinodermata: Ophiuroidea) in the Northeast Atlantic. Molecular Ecology 15: 3303–3318.

    Article  CAS  Google Scholar 

  • Orr, J.C., V.J. Fabry, O. Aumont, L. Bopp, S.C. Doney, R.A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R.M. Key, K. Lindsasy, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R.G. Najjar, G.-K. Plattner, K.B. Rodgers, C.L. Sabine, J.L. Sarmiento, R. Schlitzer, R.D. Slater, I.J. Totterdell, M.F. Weirig, Y. Yamanaka, and A. Yool. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.

    Article  CAS  Google Scholar 

  • Potin, P., J.Y. Floch, C. Augris, and J. Cabioch. 1990. Annual growth rate of the calcareous red alga Lithothamnium corallinoides in the Bay of Brest. Hydrobiologia 204(205): 263–267.

    Article  Google Scholar 

  • Raffaelli, D. and S. Hawkins. 1999. Intertidal ecology. Amsterdam: Kluwer. 356 pp.

    Google Scholar 

  • Reynaud, J.-Y., A. Lauriat-Rage, B. Tessier, D. Neraudeau, E. Braccini, R.P. Carriol, M. Clet-Pellerin, M. Moullade, and G. Lericolais. 1999. Importations et remaniements de thanatofaunes dans les sables de la plate-forme profonde des approches occidentales de la Manche. Oceanologica Acta 22: 381–396.

    Article  Google Scholar 

  • Riebesell, U., I. Zondervan, B. Rost, P.D. Tortell, R.E. Zeebe, and F.M.M. Morel. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407: 364–367.

    Article  CAS  Google Scholar 

  • Rouhi, A., J. Sif, P. Gillet, and B. Deutsch. 2008. Reproduction and population dynamics of Perinereis cultrifera (Polychaeta: Nereididae) of the Atlantic coast, El Jadida, Morocco. Cahiers de Biologie Marine 49: 151–160.

    Google Scholar 

  • Shirayama, Y. and H. Thornton. 2005. Effect of increased atmospheric CO2 on shallow water marine benthos. Journal of Geophysical Research 110: C09S08.

    Article  CAS  Google Scholar 

  • Smith, S.V. 1972. Production of calcium carbonate on the mainland shelf of Southern California. Limnology and Oceanography 17: 28–41.

    CAS  Google Scholar 

  • Stride, A.H., J.B. Wilson, and D. Curry. 1999. Accumulation of late Pleistocene and Holocene biogenic sands and gravels on the continental shelf between northern Scotland and western France. Marine Geology 159: 273–285.

    Article  Google Scholar 

  • The Royal Society. 2005. Ocean acidification due to increasing atmospheric carbon dioxide. London: The Royal Society. Policy Report 12/05. ISBN 0 85403 617 2.

    Google Scholar 

  • Thiébaut, E., L. Cabioch, J.-C. Dauvin, C. Retière, and F. Gentil. 1997. Spatiotemporal persistence of the Abra albaPectinaria koreni muddy-fine sand community of the eastern Bay of Seine. Journal of the Marine Biological Association of the United Kingdom 77: 1165–1185.

    Article  Google Scholar 

  • Tomlison, P.K. 1971. NORMSEP: Normal distribution separation. In Computer programs for fish stock assessment, ed. N.J. Abramson. FAO Fisheries Technical Papers 101.

  • Ware, J.R., S.V. Smith, and M.L. Reaka-kudha. 1991. Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11: 127–130.

    Article  Google Scholar 

  • Wood, H.L., J.L. Spicer, and S. Widdicombe. 2008. Ocean acidification may increase calcification, but at a cost. Proceedings of the Royal Society B. Biological Sciences 275: 1767–1773.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge A.V. Borges and four anonymous reviewers for their constructive comments and suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Davoult.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davoult, D., Harlay, J. & Gentil, F. Contribution of a Dense Population of the Brittle Star Acrocnida brachiata (Montagu) to the Biogeochemical Fluxes of CO2 in a Temperate Coastal Ecosystem. Estuaries and Coasts 32, 1103–1110 (2009). https://doi.org/10.1007/s12237-009-9216-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-009-9216-2

Keywords

Navigation