Skip to main content

Advertisement

Log in

Structure and Floristic Composition of Forest Management Systems Associated with the Edible Fruit Tree Oecopetalum mexicanum in the Sierra de Misantla, Veracruz, Mexico

  • Published:
Economic Botany Aims and scope Submit manuscript

Structure and Floristic Composition of Forest Management Systems Associated with the Edible Fruit Tree Oecopetalum mexicanum in the Sierra de Misantla, Veracruz, Mexico

Natural system management that favors one or a group of plant species for the benefit of humankind is one of the main factors promoting landscape change. However, depending on the focal species, management practices can promote plant diversity and contribute to the subsistence of local human populations. In this study, we identify and describe three management systems (conserved forest [CF], shade-grown coffee plantation [SGC], and enriched forest [EF]) associated with the edible fruit Oecopetalum mexicanum (Icacinaceae). The study area is in an anthropized landscape in Sierra de Misantla in central Veracruz, Mexico, where this species is of particular economic and cultural value. Three questions were addressed: 1) What is the structure and floristic diversity in each of the three identified management systems? 2) How do the management practices affect the floristic regeneration potential? and 3) How do the management systems differ in relation to the number of useful native or introduced species? In each management system, we quantified the diversity, structure, composition, physiognomy, and presence of useful species. The diversity metrics reveal a gradient in which CF is the most diverse system, followed by EF and SGC. This was observed in the groups of adult plants and in those undergoing regeneration. The EF presented the highest number of useful plants. In CF, and particularly in EF, we found a high frequency and abundance of O. mexicanum seedlings as a result of management practices that favor the germination and growth of this species. In addition, CF and EF presented analogous physiognomic characteristics. Our study demonstrates the manner in which applied management practices can determine floristic diversity, in this case reducing diversity while increasing the proportion of useful species. Furthermore, the results show that the application of management practices, especially those related to key species, can promote the conservation of natural landscape and cultural components that are of importance to the subsistence of local human populations.

Estructura y Composiciόn Florística en Sistemas de Manejo de Bosques, Asociados con el Fruto Comestible del Árbol Oecopetalum Mexicanum en la Sierra de Misantla, Veracruz

El manejo de los sistemas naturales que favorece una especie o grupos de especies vegetales para el bienestar humano es uno de los principales factores de cambio del paisaje. Dependiendo de la especie focal, las prácticas de manejo pueden promover la diversidad vegetal y contribuir al sostenimiento de las poblaciones humanas locales. En este estudio identificamos y describimos tres sistemas de manejo (bosque conservado [BC], cafetal bajo sombra [CS], y bosque enriquecido [BE]), asociados al fruto comestible Oecopetalum mexicanum en un paisaje antropizado de la Sierra de Misantla en el Centro de Veracruz, México, en donde esta especie es particularmente importante por su valor económico y cultural. Se abordaron tres preguntas de investigación: 1) ¿Cuál es la estructura y la diversidad florística en cada uno de los tres sistemas manejo identificados? 2) ¿Cuál es el efecto de las prácticas de manejo en relación al potencial de regeneración florística, y 3) ¿Cuál es la diferencia en cada sistema de manejo en relación con el número de especies útiles nativas e introducidas? Para esto, en cada sistema de manejo cuantificamos la diversidad, estructura, composición, fisonomía y presencia de especies útiles. Las métricas de diversidad para cada sistema de manejo revelan un gradiente en donde el BC es más diverso, seguido por el BE y el CS, esto fue observado para los grupos de plantas adultas y en regeneración. En el BE es el sistema que en donde se registró el mayor número de plantas útiles. En el BC y BE encontramos una alta frecuencia y abundancia de plántulas O. mexicanum debido a las prácticas de manejo que favorecen su germinación y crecimiento, especialmente en el caso de BE. Además, BC y BE poseen características fisonómicas análogas. Nuestro estudio demuestra la forma en la que las prácticas de manejo aplicadas pueden determinar la diversidad florística, en este caso disminuyendo la diversidad pero aumentando la proporción de especies útiles. También demuestra que la aplicación de prácticas de manejo, especialmente las relacionadas con especies clave, puede llegar a promover la conservación de componentes naturales, paisajísticos y culturales de importancia para la subsistencia de las poblaciones locales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Literature Cited

  • Arnold, J. E. M. and M. Ruiz-Perez. 1998. The role of non-timber forest products in conservation and development. Pages 17–42 in E. Wollenberg and A. Ingles, eds., Incomes from the forest: Methods for the development and conservation of forest products for local communities. CIFOR, Bogor.

    Google Scholar 

  • Belcher, B., G. Michon, A. Angelsen, M. Ruiz-Perez, and H. Asbjørnsen. 2000. Cultivating (in) tropical forests? The evolution and sustainability of systems of management between extractivism and plantations. Pages 9–40 in H. Asbjornsen, A. Angelsen, B. Belcher, G. Michon, M. Ruiz-Perez, and V. P. R. Wijesekara, eds., Proceedings of the Workshop: Cultivating (in) tropical forests? The evolution and sustainability of systems of management between extractivism and plantations. FORRESASIA Project, ETFRN and CIFOR, Kræmmervika, Lofoten, Norway.

    Google Scholar 

  • Boege, E. 2008. El patrimonio biocultural de los pueblos indígenas de México. Hacia la conservación in situ de la biodiversidad y agrodiversidad en los territorios indígenas. Instituto Nacional de Antropología e Historia, Comisión Nacional para el Desarrollo de los Pueblos Indígenas, México.

    Google Scholar 

  • Caballero, J. and L. Cortés. 2001. Percepción, uso y manejo tradicional de los recursos vegetales en México. Pages 79–100 in B. Redón-Aguilar, S. Rebollar-Domínguez, J. Caballero-Nieto, and M. A. Martínez-Alfaro, eds., Plantas, cultura y sociedad. Estudios sobre la relación entre seres humanos y plantas en los albores del siglo XXI. Universidad Autónoma Metropolitana (Unidad Iztapalapa), Secretaría del Medio Ambiente, Recursos Naturales y Pesca, México.

    Google Scholar 

  • Chao, A. 2005. Species richness estimation. Pages 7909–7916 in N. Balakrishnan, C. B. Read, and B. Vidakovic, eds., Encyclopedia of statistical sciences. John Wiley, New York.

    Google Scholar 

  • ———, R. K. Colwell, C. W. Lin, and N. Gotelli. 2009. Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90:1125–1133.

    Article  PubMed  Google Scholar 

  • Clarke, K. R. 1993. Non-parametric multivariate analysis of changes in community structure. Australian Journal of Ecology 18:117–143.

    Article  Google Scholar 

  • Colwell, R. 2009. EstimateS: Statistical estimation of species richness and shared species from samples.Version 8.2. http://viceroy.eeb.uconn.edu/EstimateS .

  • De Ávila, B. A. 2008. La diversidad lingüística y el conocimiento etnobiológico. Pages 497–556 in K. J. Sarukhán, ed., Capital natural de México, Vol. I, Cap. 16, Conocimiento actual de la biodiversidad. CONABIO, Mexico.

    Google Scholar 

  • Dirzo, R., A. Aguirre, and J. C. López. 2009. Diversidad florística de las selvas húmedas en paisajes antropizados. Investigación Ambiental 1:17–22.

    Google Scholar 

  • Ellis, E. C. 2011. Anthropogenic transformation of the terrestrial biosphere. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369:1010–1035.

    Article  Google Scholar 

  • Fearnside, P. M. 1989a. Extractive reserves in Brazilian Amazonia. BioScience 39:387–393.

    Article  Google Scholar 

  • ——— 1989b. Forest management in Amazônia: The need for new criteria in evaluating development options. Forest Ecology Management 27:61–79.

    Article  Google Scholar 

  • García-Fernández, C., A. Casado, and M. Ruíz-Pérez. 2003. Benzoin gardens in North Sumatra, Indonesia: Effects of management on tree diversity. Conservation Biology 17(3):829–836.

    Article  Google Scholar 

  • Gentry, A. H. 1982. Patterns of neotropical plant species diversity. Evolutionary Biology 15:1–84.

    Article  Google Scholar 

  • Gómez-Pompa, A. 1966. Estudios botánicos en la región de Misantla, Veracruz. Instituto Mexicano de Recursos Naturales Renovables, A.C., México.

    Google Scholar 

  • Gotelli, N. J. and R. K. Colwell. 2001. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4(4):379–391.

    Article  Google Scholar 

  • Gutiérrez, B. 1993. Listado florístico de la sierra del Chiconquiaco, Veracruz. Textos Universitarios. Universidad Veracruzana, México.

    Google Scholar 

  • ——— 1994. Icacinaceae. in V. Sosa and A. Gómez-Pompa, eds., Flora de Veracruz. Instituto de Ecología, A. C., and University of California, México.

    Google Scholar 

  • Horn, H. S. 1966. Measurement of “overlap” in comparative ecological studies. American Naturalist 100:419–424.

    Article  Google Scholar 

  • Kelly, I. and A. Palerm. 1952. The Tajin Totonac. Part I. History, subsistence, shelter and technology: Smithsonian Institution. Institute of Social Anthropology, Washington, D.C.

    Google Scholar 

  • Lamanda, N., E. Malezieux, and P. Martin. 2006. Structure and dynamics of coconut-based agroforestry systems in Melanesia: A case study from the Vanuatu Archipelago. Pages 105–121 in B. M. Kurnar and P. K. R. Nair, eds., Tropical homegardens: A time-tested example of sustainable agroforestry. Springer, The Netherlands.

    Chapter  Google Scholar 

  • Lamprecht, H. 1990. Silviculture in the Tropics: Tropical forest ecosystems and their tree species possibilities and methods for their long-term utilization. GTZ (Deutsche Gesellschaft fur Technische Zusammenarbeit), Eschborn, Germany.

    Google Scholar 

  • Lascurain, M. 2011. Manejo y uso de la fruta silvestre comestible Oecopetalum mexicanum Greenm. & C.H. Thomps.,(cachichín) de la sierra de Misantla, Veracruz, México: Un estudio de caso. Ph.D. thesis, Universidad de Córdoba, España.

  • ———, G. Ángeles, E. F. Ortega, V. R. Ordoñez, M. Ambrosio, and S. Avendaño. 2007. Características anatómicas y propiedades mecánicas de la madera de Oecopetalum mexicanum Greenm. & C.H. Thomps. (Icacinaceae): Cachichín de la sierra de Misantla, Veracruz. Madera y Bosques 13(2):83–95.

    Google Scholar 

  • ———, C. López, and P. Zamora. 2009. Production chain of Oecopetalum mexicanum (Cachichín): A tropical fruit tree from México. Acta Horticulturae 806:519–524.

    Google Scholar 

  • Lenière, A. and H. Gilles. 2006. Response of herbaceous plant diversity to reduced structural diversity in maple-dominated (Acer saccharum Marsh.) forests managed for sap extraction. Forest Ecology and Management 231(1–3):94–104.

    Article  Google Scholar 

  • López, J. C. and R. Dirzo. 2007. Floristic diversity of sabal palmetto woodland: An endemic and endangered vegetation type from Mexico. Biodiversity Conservation 16(3):807–825.

    Article  Google Scholar 

  • Lou, J., A. Chao, and R. L. Chazdon. 2011. Compositional similarity and beta diversity. Pages 66–84 in A. E. Magurran and B. J. McGill, eds., Biological diversity frontiers in measurement and assessment. Oxford University Press, New York.

    Google Scholar 

  • Maffi, L. 2004. Maintaining and restoring biocultural diversity: The evolution of a role for ethnobiolgy. In: Ethnobotany and conservation of biocultural diversity, eds. J. S. Carlson and L. Maffi, 9–35. Advances in Economic Botany. New York: New York Botanical Garden Press.

  • Magurran, A. E. 1988. Ecological diversity and its measurement. Princeton University Press, Princeton, New Jersey.

    Book  Google Scholar 

  • ——— 2004. Measuring biological diversity. Blackwell Publishing, Oxford, U.K.

    Google Scholar 

  • Manson, R. H., V. Hernández, S. Gallina, and K. Mehltreter. 2008. Prólogo. Pages ix–x in R. H. Manson, V. Hernández, S. Gallina, and K. Mehltreter, eds., Agroecosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y Conservación. INECOL (Instituto de Ecologia A. C.), INE-SEMARNAT, México.

    Google Scholar 

  • Medellín-Morales, S. G. 1988. Arboricultura y silvicultura tradicional en una comunidad totonaca de la costa. M.Sci. thesis. Instituto Nacional de Investigaciones sobre Recursos Bióticos, México.

  • Michon, G. 2005. Domesticating forests. How farmers manage forest resources. Center for International Forestry Research and World Agroforestry Centre.

  • MEA (Millennium Ecosystem Assessment). 2005. Ecosystem and human well-being. Vol. 2: Scenarios, findings of the scenarios working group, Millennium Ecosystem Assessment. Island Press, Washington, D.C.

    Google Scholar 

  • Moguel, P. and V. M. Toledo. 1999. Biodiversity conservation in traditional coffee systems of México. Conservation Biology 13(1):11–21.

    Article  Google Scholar 

  • Peters, C. M. 2000. Precolumbian silviculture and indigenous management of neotropical forests. Pages 201–223 in D. L. Lents, ed., Imperfect balance, landscape transformations in the pre-Columbian Americas. Columbia University Press, New York.

    Google Scholar 

  • ———, M. J. Balick, F. Kahn, and A. B. Anderson. 1989a. Oligarchic forests of economic plants in Amazonia: Utilization and conservation of an important tropical resource. Conservation Biology 3:341–349.

    Article  CAS  PubMed  Google Scholar 

  • ———, A. H. Gentry, and R. O. Mendelsohn. 1989b. Valuation of an Amazonian rainforest. Nature 339:655–656.

    Article  Google Scholar 

  • Ross, N. J. 2011. Modern tree species composition reflects ancient Maya “forest gardens” in northwest Belize. Ecological Applications 21(1):75–84.

    Article  PubMed  Google Scholar 

  • Schroth, G., C. A. Harvey, and G. Vincent. 2004. Complex agroforests: Their structure, diversity and potential role in landscape conservation. Pages 227–260 in G. Schroth, G. A. B. da Fonseca, C. A. Harvey, C. Gascon, H. L. Vasconcelos, and A.-M. N. Izac, eds., Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, D.C.

    Google Scholar 

  • Solow, A. R. 1993. A simple test for change in community structure. Animal Ecology 62:191–193.

    Article  Google Scholar 

  • Toledo, V. M. 2009. ¿Por qué los pueblos indígenas son la memoria de la especie? Papeles 107:27–38.

    Google Scholar 

  • ——— and N. Barrera-Bassols. 2008. La memoria biocultural: La importancia ecológica de las sabidurías tradicionales. Icaria Editorial, Barcelona, Spain.

    Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco, J. M. Melillo, N. Series, and N. Jul. 2008. Human domination of earth’s ecosystems. Science 277:494–499.

    Article  Google Scholar 

  • Wiersum, K. F. 1997. Indigenous exploitation and management of tropical forest resources: An evolutionary continuum in forest-people interactions. Agriculture, Ecosystems and Environment 63:1–16.

    Article  Google Scholar 

  • Wolda, H. 1981. Similarity indices, samples size and diversity. Oecologia 50:290–298.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Arturo Gomez-Pompa, Patrick Van Damme, Jennifer Petersen, Noé Velazquez, and two anonymous reviewers for their constructive criticism of a previous version of this manuscript. Keith MacMillan revised the English version of the manuscript. We thank the families Lopez and Triano, from Misantla and Yecuatla Municipalities, respectively, for providing us with the facilities for this study. This project was supported by the Mexican National Forestry Commission (Fondo Sectorial Conafor-Conacyt 2002-C01-6510 and Pro-arbol Programe S20073000662).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. López-Acosta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1 (Electronic Supplementary Material)

List of the species present in the three forest management systems associated with O. mexicanum (conserved forest, shade-grown coffee plantation, enriched forest), including plants from two strata: trees with DBH ≥1 cm (T), and understory regeneration (U). This species corresponds to 3,000 m2 of the sampled area. (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Acosta, J.C., Lascurain, M., López Binnqüist, C. et al. Structure and Floristic Composition of Forest Management Systems Associated with the Edible Fruit Tree Oecopetalum mexicanum in the Sierra de Misantla, Veracruz, Mexico. Econ Bot 68, 44–58 (2014). https://doi.org/10.1007/s12231-014-9260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12231-014-9260-0

Key Words

Navigation