Skip to main content
Log in

Assessing the Contribution of Sli to Self-Compatibility in North American Diploid Potato Germplasm Using KASP™ Markers

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

A Correction to this article was published on 16 March 2021

This article has been updated

Abstract

Diploid hybrid potato variety development requires the introduction of reliably transmitted self-compatibility (SC) to largely self-incompatible elite diploid germplasm. The diploid Solanum chacoense clone M6 has been widely used to introgress SC into North American potato diploid breeding programs. We determined that M6 is homozygous for six DNA Kompetitive Allele Specific PCR (KASP)™ markers spanning a 224 kb region, linked to Sli in Dutch germplasm. Self-compatible Sli alleles were identified in dihaploids of the cultivars ‘Atlantic’ and ‘Superior’ and breeding clone NY148. This finding demonstrates the potential of Sli genotyping to select S. tuberosum dihaploids that will contribute to SC. We appraised the transmission of Sli in a diploid recurrent selection population and in a diploid backcross population, each designed to introgress SC while improving agronomic traits. The frequency of the homozygous self-compatible Sli genotype at the six marker loci increased over the course of four cycles of recurrent selection. The homozygous Sli self-compatible genotype at any one of five marker loci within an 80.8 kb region on chromosome 12 (58,960,090-59,040,898 bp) perfectly predicted a SC phenotype in the recurrent selection population. The heterozygous Sli genotype was found in self-compatible and self-incompatible individuals. The discrepancy between phenotype and marker genotype can be attributed in part to the difficulty of accurately phenotyping SC. We also identified self-compatible individuals with the homozygous self-incompatible Sli genotype at all tested loci. The presence of the homozygous self-incompatible Sli haplotype in self-compatible clones 1S1 and DMRH-89 and a self-compatible individual from the S. chacoense PI 133664 further suggests that other genetic components contribute to SC. This work illustrates the ability of Sli markers to predict SC in some germplasm, but it also underscores the need to identify other genomic regions critical to SC and the role of the environment in expression of genes involved in the SC reaction.

Resumen

El desarrollo de una variedad de papa híbrida diploide requiere de la introducción de la transmisión confiable de autocompatibilidad (SC) a germoplasma élite diploide ampliamente autoincompatible (SI). El clon M6 diploide de Solanum chacoense ha sido usado ampliamente para introgresión de SC a programas Norteamericanos de mejoramiento de papa diploide. Determinamos que M6 es homozigotico para seis marcadores TM de alelos específicos de PCR competitivos de DNA (KASP) abarcando una región de 224 kb, ligado a Sli en germoplasma holandés. Se identificaron alelos Sli autocompatibles en dihaploides de las variedades “Atlantic” y “Superior” y del clon de mejoramiento NY148. Este hallazgo demuestra el potencial de genotipeo Sli para seleccionar dihaploides de S. tuberosum que contribuirán a SC. Estimamos la transmisión de Sli en una selección de una población recurrente diploide y en una población diploide de retrocruza, cada una diseñada para introducir SC mientras se mejoraban características agronómicas. La frecuencia del genotipo homozigotico SC Sli en los seis loci marcadores incrementaron sobre el curso de cuatro ciclos de selección recurrente. El genotipo homozigotico Sli SC en cualquiera de cinco loci marcadores dentro de una región de 80.8 kb en el cromosoma 12 (58,960,090- 59,040,898 pb) predijeron perfectamente un fenotipo SC en la selección de la población recurrente. El genotipo heterozigotico Sli se encontró en individuos SC y SI. La discrepancia entre fenotipo y genotipo marcador puede atribuirse en parte a la dificultad del fenotipado con precisión de SC. También identificamos individuos SC con el genotipo homozigotico SI sli en todos los loci probados. La presencia del haplotipo homozigotico SI Sli en clones SC1S1 y DMRH-89 y un individuo SC del S. chacoense PI 133664 sugiere mas aun que otros componentes genéticos contribuyen a SC. Este trabajo ilustra la habilidad de los marcadores Sli para predecir SC en algún germoplasma, pero también destaca la necesidad de identificar otras regiones genómicas críticas a SC y el papel del ambiente en la expresión de los genes involucrados en la reacción SC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Ai, Y., E. Kron, and T.H. Kao. 1991. S-alleles are retained and expressed in a self-compatible cultivar of Petunia hybrida. Molecular General Genetics 230: 353–358.

    Article  CAS  Google Scholar 

  • Alsahlany, M. (2019). Redesigning diploid potato breeding with self-compatibility. PhD Thesis, Michigan State University. https://doi.org/10.25335/zssg-7j97

  • Alsahlany, M., Enciso-Rodriguez, F., Lopez-Cruz, M., Coombs, J., & Douches, D. (2020). Developing self-compatible diploid potato germplasm through recurrent selection. Euphytica.

  • Bernatzky, R., R.H. Glaven, and B.A. Rivers. 1995. S-related proteins can be recombined with self-incompatibility in interspecific derivatives of Lycopersicon. Biochemical Genetetics 33: 215–225.

    Article  CAS  Google Scholar 

  • Birhman, R.K., and K. Hosaka. 2000. Production of inbred progenies of diploid potatoes using an S-locus inhibitor (Sli) gene, and their characterization. Genome 43: 495–502.

    Article  CAS  Google Scholar 

  • Carson, G., and H. Howard. 1942. Self-incompatibility in certain diploid potato species. Nature 150: 290. https://doi.org/10.1038/150290a0.

  • Clark, A.G., and T.H. Kao. 1994. Self-incompatibility: Theoretical concepts and evolution. In Genetic control of self-incompatibility and reproductive development in flowering plants, ed. E.G. Williams, A.E. Clarke, and R.B. Knox, 220–242. Dordrecht: Kluwer Acad. Publishers.

    Chapter  Google Scholar 

  • Clot, C.R., C. Polzer, C. Prodhomme, C. Schuit, C. Engelen, R. Hutten, and H.J. Van Eck. 2020. The origin and widespread occurrence of Sli-based self-compatibility in potato. Theoretical and Applied Genetics. 133: 2713–2728.

    Article  CAS  Google Scholar 

  • De Jong, H., and P.R. Rowe. 1971. Inbreeding in cultivated diploid potatoes. Potato Research 14: 74–83.

    Article  Google Scholar 

  • Despres, C., M. Saba-El-Leil, S. Rivard, D. Morse, and M. Cappadocia. 1994. Molecular cloning of two Solanum chacoense S-alleles and a hypothesis concerning their evolution. Seualx Plant Reproduction 7: 169–176.

    Google Scholar 

  • Dzidzienyo, D., G.J. Bryan, G. Wilde, and T. Robbins. 2016. Allelic diversity of S-RNase alleles in diploid potato species. Theoretical and Applied Genetics 129: 1985–2001. https://doi.org/10.1007/s00122-016-2754-7.

    Article  CAS  PubMed  Google Scholar 

  • Enciso-Rodriguez, F., N.C. Manrique-Carpintero, S.S. Nadakuduti, C.R. Buell, D. Zarka, and D. Douches. 2019. Overcoming self-incompatibility in diploid potato using CRISPR-Cas9. Frontiers in Plant Science 10: 1–12. https://doi.org/10.3389/fpls.2019.00376.

    Article  Google Scholar 

  • Endelman, J., Jansky, S. H., Butler, N., & Christensen, G. (2019). Genetic evidence of a recessive lethal allele on potato chromosome 12. Potato Association of America, Fargo, ND. In American Journal of Potato Research. 96:331.

  • Fujii, S., K. Kubo, and S. Takayama. 2016. Non-self- and self-recognition models in plant self-incompatibility. Nature Plants 2. https://doi.org/10.1038/nplants.2016.130.

  • Gans, J., and M. Wolinsky. 2008. Improved assay-dependent searching of nucleic acid sequence databases. Nucleic Acid Research 36: e74.

    Article  Google Scholar 

  • Goldraij, A., K. Kondo, C.B. Lee, C.N. Hancock, M. Sivaguru, S. Vazquez-Santana, and B. McClure. 2006. Compartmentalization of S-RNase and HT-B degradation in self-incompatible nicotiana. Nature 439: 805–810. https://doi.org/10.1038/nature04491.

  • Haynes, K.G., and M. Guedes. 2018. Self -compatibility in a diploid hybrid population of Solanum phurejaS. stenotomum. American Journal of Potato Research 95: 729–734. https://doi.org/10.1007/s12230-018-9680-y.

    Article  CAS  Google Scholar 

  • Hosaka, K., and R.E. Hanneman. 1998a. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 1. Detection of an S locus inhibitor (Sli) gene. Euphytica 99: 191–197. https://doi.org/10.1023/a:1018353613431.

  • Hosaka, K., and R.E. Hanneman. 1998b. Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers. Euphytica 103: 265–271.

    Article  CAS  Google Scholar 

  • Hua, Z.-H., A. Fields, and T. Kao. 2008. Biochemical models for S-RNase-based self-incompatibility. Molecular Plant Microbe Interactions 1: 575–585. https://doi.org/10.1093/mp/ssn032.

    Article  CAS  Google Scholar 

  • Jansky, S.H., Y.S. Chung, and P. Kittipadukal. 2014. M6: A diploid potato inbred line for use in breeding and genetics research. Journal of Plant Registrations 8: 195–199. https://doi.org/10.3198/jpr2013.05.0024crg.

    Article  Google Scholar 

  • Kondo, K., M. Yamamoto, R. Itahashi, T. Sato, H. Egashira, T. Hattori, and Y. Kowyama. 2002. Insights into the evolution of self-compatibility in Lycopersicon from a study of stylar factors. The Plant Journal 30: 143–153.

    Article  CAS  Google Scholar 

  • Kubo, K., T. Paape, M. Hatakeyama, T. Entani, A. Takara, K. Kajihara, and S. Takayama. 2015. Gene duplication and genetic exchange drive the evolution of S-RNase-based self-incompatibility in Petunia. Nature Plants 1: 14005. https://doi.org/10.1038/nplants.2014.5.

  • Leisner, C.P., J.P. Hamilton, E. Crisovan, N.C. Manrique-Carpintero, A.P. Marand, L. Newton, G.M. Pham, J. Jiang, D.S. Douches, S.H. Jansky, and C.R. Buell. 2018. Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant Journal 94: 562–570. https://doi.org/10.1111/tpj.13857.

    Article  CAS  Google Scholar 

  • Manrique-Carpintero, N.C., J.J. Coombs, G.M. Pham, F.P.E. Laimbeer, G.T. Braz, J. Jiang, R.E. Veilleux, C.R. Buell, and D.S. Douches. 2018. Genome reduction in tetraploid potato reveals genetic load, haplotype variation, and loci associated with agronomic traits. Frontiers in Plant Science 9: 944.

    Article  Google Scholar 

  • Marcellan, O., A. Acevedo, and E. Camadro. 2006. S16, a novel S-RNase allele in the diploid species Solanum chacoense. Genome 49: 1052–1054.

    Article  CAS  Google Scholar 

  • Martin, F.W. 1968. The behavior of Lycopersicon incompatibility alleles in an alien genetic milieu. Genetics 60: 101–109.

    Article  CAS  Google Scholar 

  • McClure, B., F. Cruz-García, and C. Romero. 2011. Compatibility and incompatibility in S-RNase-based systems. Annals of Botany 108: 647–658.

    Article  CAS  Google Scholar 

  • McClure, B., B. Mou, S. Canevascini, and R. Bernatzky. 1999. A small asparagine-rich protein required for S-allele-specific pollen rejection in Nicotiana. Proceedings of the National Academy of Science 96: 13548–13553.

    Article  CAS  Google Scholar 

  • McClure, B.A., V. Haring, P.R. Ebert, M.A. Anderson, R.J. Simpson, F. Sakiyama, and A.E. Clarke. 1989. Style self-incompatibility gene products of Nicotlana alata are ribonucleases. Nature 342: 955–957. https://doi.org/10.1038/342955a0.

  • O’Brien, M., C. Kapfer, G. Major, M. Laurin, C. Bertrand, K. Kondo, and D.P. Matton. 2002. Molecular analysis of the stylar-expressed Solanum chacoense small asparagine-rich protein family related to the HT modifier of gametophytic self-incompatibility in nicotiana. Plant Journal 32: 985–996. https://doi.org/10.1046/j.1365-313X.2002.01486.x.

    Article  Google Scholar 

  • Park, T.-H., V.G.A.A. Vleeshouwers, C.B.R. Hutten, H. van Eck, E. van der Vossen, E. Jacobsen, and R.G. Visser. 2005. High-resolution mapping and analysis of the resistance locus Rpi-abpt against Phytophthora infestans in potato. Molecular Breeding 16: 33–43.

    Article  CAS  Google Scholar 

  • Peterson, B.A., S.H. Holt, F.P.E. Laimbeer, A.G. Doulis, J. Coombs, D.S. Douches, M.A. Hardigan, C.R. Buell, and R.E. Veilleux. 2016. Self-fertility in a cultivated diploid potato population examined with the Infinium 8303 potato single-nucleotide polymorphism array. The Plant Genome 9 (0). https://doi.org/10.3835/plantgenome2016.01.0003.

  • PGSC. 2011. Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195. https://doi.org/10.1038/nature10158.

  • Phumichai, C., M. Mori, A. Kobayashi, and O. Kamijima. 2005. Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene. Genome 984: 977–984. https://doi.org/10.1139/G05-066.

    Article  CAS  Google Scholar 

  • Qi, X., D. Luu, Q. Yang, O. Maes, D. Matton, D. Morse, and M. Cappadocia. 2001. Genotype-dependent differences in S12-RNase expression lead to sporadic self-compatibility in Solanum chacoense. Plant Molecular Biology 45: 295–305.

    Article  CAS  Google Scholar 

  • Saba-el-Leil, M., S. Rivard, D. Morse, and M. Cappadocia. 1994. The S11 and S13 self incompatibility alleles in Solanum chacoense bitt. Are remarkably similar. Plant Molecular Biology 24: 571–583.

    Article  CAS  Google Scholar 

  • Sanwen, H., Ling, M., Yi, S., Chunzhi, Z., & Canhui, L. (2019). StSCI protein for changing self-incompatibility of diploid potato material. Patent: CN110938120A. https://patents.google.com/patent/CN110938120A/en?q=self+incompatibility+potato&oq=self+incompatibility+potato

  • Takayama, S., and A. Isogai. 2005. Self-incompatibility in plants. Annual Reviews in Plant Biology 56: 467–489. https://doi.org/10.1146/annurev.arplant.56.032604.144249.

    Article  CAS  Google Scholar 

  • van der Voort, J.R., W. Lindeman, R. Folkertsma, R. Hutten, H. Overmars, E. van der Vossen, E. Jacobsen, and J. Bakker. 1998. A QTL for broad-spectrum resistance to cyst nematode species (Globodera spp.) maps to a resistance gene cluster in potato. Theoretical and Applied Genetics 96: 654–661.

    Article  Google Scholar 

  • Xu, B., J. Mu, D. Nevins, P. Grun, and T.-H. Kao. 1990. Cloning and sequencing of cDNAs encoding two self-incompatibility associated proteins in Solanum chacoense. Molecular and General Genetics 224: 341–346.

    Article  CAS  Google Scholar 

  • Zhang, C., P. Wang, D. Tang, Z. Yang, F. Lu, J. Qi, N.R. Tawari, Y. Shang, C. Li, and S. Huang. 2019. The genetic basis of inbreeding depression in potato. Nature Genetics 51: 374–378.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Kaiser.

Additional information

The original online version of this article was revised: The Spanish-language Abstract was omitted from the original publication.

Supplementary Information

ESM 1

(XLSX 35 kb)

ESM 2

(XLSX 15 kb)

ESM 3

(XLSX 10 kb)

ESM 4

(XLSX 14 kb)

ESM 5

(XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, N.R., Jansky, S., Coombs, J.J. et al. Assessing the Contribution of Sli to Self-Compatibility in North American Diploid Potato Germplasm Using KASP™ Markers. Am. J. Potato Res. 98, 104–113 (2021). https://doi.org/10.1007/s12230-021-09821-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-021-09821-8

Keywords

Navigation