Skip to main content
Log in

Streptomyces – from Basic Microbiology to Role as a Plant Pathogen

  • SYMPOSIUM PAPER
  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Streptomycetes are spore-forming Gram-positive bacteria found in soil in large numbers world-wide. More than 600 Streptomyces species have been described. The complex developmental morphology and molecular genetics of Streptomyces is connected to production of a wealth of secondary products, including more than 60% of antibiotics in industrial and pharmaceutical use. Streptomycetes have important roles in soil ecology as decomposers, though specific roles in microbial community structure and plant health are poorly understood. Some species are used as biocontrol agents while others have specific associations with potatoes as endophytes, pathogens or as part of plant rhizosphere communities. Very few species are plant pathogenic (ca. 1%), causing common scab disease on underground tubers in potatoes and root diseases in a broad range of host plants. Several unique aspects of Streptomyces as a plant pathogen are that (a) there is a main dominant pathogenicity determinant (thaxtomin); (b) only the developing underground stems, stolons and tubers are susceptible to potato common scab (CS); (c) Streptomyces does not incite a plant defense response; and (d) CS is not easily managed. The best available control is the use of resistant potato cultivars and there is wide variation in resistance (tolerance) among potato cultivars, though none is completely resistant. New molecular genetic tools, including the complete genome sequences of a number of plant pathogenic Streptomyces species and association mapping using the potato genome sequence, promise greater understanding of the genetics of CS tolerance and of regulation of thaxtomin production and contributory pathogenicity factors for better management of potato CS.

Resumen

Los Streptomycetos son bacterias que forman esporas, Gram-positivas, que se encuentran en gran número en el suelo en todo el mundo. Se han descrito más de 600 especies de streptomicetos. La compleja morfología de desarrollo y la genética molecular de los streptomicetos están conectadas a la producción de muchos productos secundarios, incluyendo más del 60% de antibióticos de uso industrial y farmacéutico. Los streptomicetos tienen un papel importante en la ecología del suelo como degradadores, a través de funciones específicas en la estructura de la comunidad microbiana y la sanidad de la planta es pobremente entendida. Algunas especies se usan como agentes de biocontrol mientras que otras tienen asociaciones específicas con las papas como endófitos, patógenos, o como parte de las comunidades de la rizosfera. Muy pocas especies son fitopatógenas (aprox. 1%), causando la enfermedad de la roña común en tubérculos bajo tierra en papas, y enfermedades de la raíz en una gran amplitud de plantas hospedantes. Varios aspectos únicos de Streptomyces como fitopatógeno son que (a) hay una determinante principal dominante de la patogenicidad (thaxtomin); (b) solo los tallos subterráneos en desarrollo, los estolones y los tubérculos son susceptibles a la roña común de la papa (CS); (c) Sterptomyces no incita a una respuesta de defensa de la planta; y (d) CS no es fácilmente manejable. El mejor control disponible es el uso de variedades resistentes de papa y hay una variación muy amplia en la resistencia (tolerancia) entre las variedades, aunque ninguna es completamente resistente. Nuevas herramientas de genética molecular, incluyendo las secuencias completas del genomio de un número de especies de Streptomyces fitopatógenas y el mapeo de la asociación usando la secuencia genómica de la papa, prometen un mayor entendimiento de la genética de la tolerancia a CS y de la regulación de la producción de thaxtomin y de los factores que contribuyen a la patogenicidad para un mejor manejo de la CS de la papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg, G., and K. Smalla. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology 68: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Bignell, D., J. Huguet-Tapia, M. Joshi, G. Pettisand, and R. Loria. 2010. What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie van Leeuwenhoek 98: 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Chater, K.F., S. Biró, K.J. Lee, T. Palmer, and H. Schrempf. 2010. The complex extracellular biology of Streptomyces. FEMS Microbiology Reviews 34: 171–198.

    Article  CAS  PubMed  Google Scholar 

  • Dees, M., and L. Wanner. 2012. In search of better management of potato common scab. Potato Research 55: 249–268.

    Article  Google Scholar 

  • Doroghazi, J.R., and D.H. Buckley. 2010. Widespread homologous recombination within and between Streptomyces species. ISME Journal 4: 1136–1143.

    Article  CAS  PubMed  Google Scholar 

  • Errakhi, R., A. Dauphin, P. Meimoun, A. Lehner, D. Reboutier, P. Vatsa, J. Briand, K. Madiona, J.P. Rona, M. Barakate, D. Wendehenne, C. Beaulieuand, and F. Bouteau. 2008. An early Ca2+ influx is a prerequisite to thaxtomin A-induced cell death in Arabidopsis thaliana cells. Journal of Experimental Botany 59: 4259–4270.

    Article  CAS  PubMed  Google Scholar 

  • Flinn, B., C. Rothwell, R. Griffiths, M. Lägue, D. deKoeyer, R. Sardana, P. Audy, C. Goyer, X.-Q. Li, G. Wang-Pruski, and S. Regan. 2005. Potato expressed sequence tag generation and analysis using standard and unique cDNA Libraries. Plant Molecular Biology 59: 407–433.

    Article  PubMed  Google Scholar 

  • Flores-González, R., I. Velasco, and F. Montes. 2008. Detection and characterization of Streptomyces causing potato common scab in Western Europe. Plant Pathology 57: 162–169.

    Google Scholar 

  • Goyer, C., and C. Beaulieu. 1997. Host range of streptomycete strains causing common scab. Plant Disease 81: 901–904.

    Article  Google Scholar 

  • Hao, J.J., Q.X. Meng, J.F. Yin, and W.W. Kirk. 2009. Characterization of a new Streptomyces strain, DS3024, that causes potato common scab. Plant Disease 93: 1329–1334.

    Article  CAS  Google Scholar 

  • Haynes, K., L. Wanner, C. Thill, J. Bradeen, J. Miller, R. Novy, J. Whitworth, D. Corsini, and B. Vinyard. 2010. Common scab trials of potato varieties and advanced selections at three U.S. locations. American Journal of Potato Research 87: 261–276.

    Article  Google Scholar 

  • Hill, J., and G. Lazarovits. 2005. A mail survey of growers to estimate potato common scab prevalence and economic loss in Canada. Canadian Journal of Plant Pathology 27: 46–52.

    Article  Google Scholar 

  • Hiltunen, L.H., T. Ojanperä, H. Kortemaa, E. Richter, M.J. Lehtonen, and J.P.T. Valkonen. 2009. Interactions and biocontrol of pathogenic Streptomyces strains co-occurring in potato scab lesions. Journal of Applied Microbiology 106: 199–212.

    Article  CAS  PubMed  Google Scholar 

  • Huguet-Tapia, J.C., and R. Loria. 2012. Draft genome sequence of streptomyces acidiscabies 84-104, an emergent plant pathogen. Journal of Bacteriology 194: 1847.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Janssen, P.H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology 72: 1719–1728.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kers, J., K. Cameron, M. Joshi, R. Bukhalid, J. Morello, M. Wach, D. Gibsonand, and R. Loria. 2005. A large, mobile pathogenicity island confers plant pathogenicity on Streptomyces species. Molecular Microbiology 55: 1025–1033.

    Article  CAS  PubMed  Google Scholar 

  • Khatri, B.B., R.S. Tegg, P.H. Brownand, and C.R. Wilson. 2011. Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathology 60: 776–786.

    Article  Google Scholar 

  • King, R.R., and L.A. Calhoun. 2009. The thaxtomin phytotoxins: Sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 70: 833–841.

    Article  CAS  PubMed  Google Scholar 

  • King, R.R., C.H. Lawrence, and M.C. Clark. 1991. Correlation of phytotoxin production with pathogenicity of Streptomyces scabies isolates from scab infected potato tubers. American Journal of Potato Research 68: 675–680.

  • King, R.R., C.H. Lawrence, and J.A. Gray. 2001. Herbicidal properties of the thaxtomin group of phytotoxins. Journal of Agricultural and Food Chemistry 49: 2298–2301.

    Article  CAS  PubMed  Google Scholar 

  • Kinkel, L.L., D.C. Schlatter, M.G. Bakker, and B.E. Arenz. 2012. Streptomyces competition and co-evolution in relation to plant disease suppression. Research in Microbiology 163: 490–499.

    Article  PubMed  Google Scholar 

  • Kirk, W.W. and Wharton, P.S. 2014. Fungal and bacterial disease aspects of potato production. In The Potato, Botany, Production and Uses. eds. R. Navarre and M. Pavek. Chapter 11. Pp 167–201. CABI, Boston, MA.

  • Krechel, A., A. Faupel, J. Hallmann, A. Ulrich, and G. Berg. 2002. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Canadian Journal of Microbiology 48: 772–786.

    Article  CAS  PubMed  Google Scholar 

  • Labeda, D.P. 2010. Multilocus sequence analysis of phytopathogenicStreptomyces species. International Journal of Systematic and Evolutionary Microbiology 61: 2525–2531.

    Article  PubMed  Google Scholar 

  • Larkin, R.P., T.S. Griffin, and C.W. Honeycutt. 2010. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Disease 94: 1491–1502.

    Article  Google Scholar 

  • Larkin, R.P., C.W. Honeycutt, T.S. Griffin, O.M. Olanya, J.M. Halloran, and Z. He. 2011. Effects of different potato cropping system approaches and water management on soilborne diseases and soil microbial communities. Phytopathology 101: 58–67.

    Article  PubMed  Google Scholar 

  • Lawrence, C.H., M.C. Clark, and R.R. King. 1990. Induction of common scab symptoms in aseptically cultured potato tubers by the vivotoxin, thaxtomin. Phytopathology 80: 606–608.

    Article  CAS  Google Scholar 

  • Legault, G., S. Lerat, P. Nicolas, and C. Beaulieu. 2011. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings. Phytopathology 101: 1045–1051.

    Article  CAS  PubMed  Google Scholar 

  • Lerat, S., A. Simao-Beaunoir, R. Wu, N. Beaudoin, and C. Beaulieu. 2010. Involvement of the plant polymer Suberin and the disaccharide cellobiose in triggering thaxtomin A biosynthesis, a phytotoxin produced by the pathogenic agent streptomyces scabies. Phytopathology 100: 91–96.

    Article  CAS  PubMed  Google Scholar 

  • Lorang, J.M., D. Liu, N.A. Andersen, and J.L. Schottel. 1995. Identification of potato scab inducing and suppressive species of Streptomyces. Phytopathology 85: 261–268.

    Article  Google Scholar 

  • Loria, R., R.A. Bukhalid, B.A. Fry, and R.R. King. 1997. Plant pathogenicity in the genus Streptomyces. Plant Disease 81: 836–846.

    Article  Google Scholar 

  • Manter, D., J. Delgado, D. Holm, and R. Stong. 2010. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microbial Ecology.

  • Mendes, R., M. Kruijt, I. de Bruijn, E. Dekkers, M. van der Voort, J.H.M. Schneider, Y.M. Piceno, T.Z. DeSantis, G.L. Andersen, P.A.H.M. Bakker, and J.M. Raaijmakers. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  • Minuto, A., D. Spadaro, A. Garibaldi, and M.L. Gullino. 2006. Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization. Crop Protection 25: 468–475.

  • Neeno-Eckwall, E.C., L.L. Kinkel, and J.L. Schottel. 2001. Competition and antibiosis in the biological control of potato scab. Canadian Journal of Microbiology 47: 332–340.

    Article  CAS  PubMed  Google Scholar 

  • Peters, R.D., M.R. Carter, J.B. Sanderson, and A.V. Sturz. 2004. Influence of crop rotation and conservation tillage practices on the severity of soil-borne potato diseases in temperate humid agriculture. Canadian Journal of Soil Science 84: 397–402.

    Article  Google Scholar 

  • Rosenzweig, N. 2014. The importance and application of bacterial diversity in sustainable agricultural crop production ecosystems. In Bacterial Diversity in Sustainable Agriculture, ed. D.K. Maheshwari. Switzerland: Springer International Publishing AG.

    Google Scholar 

  • Seipke, R.F., M. Kaltenpoth, and M.I. Hutchings. 2012. Streptomyces as symbionts: An emerging and widespread theme? FEMS Microbiology Reviews 36: 862–876.

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch, A., B. Reiter, and G. Berg. 2004. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Canadian Journal of Microbiology 50: 239–249.

    Article  CAS  PubMed  Google Scholar 

  • St-Onge, R., C. Goyer, R. Coffin, and M. Filion. 2008. Genetic diversity of Streptomyces spp. causing common scab of potato in eastern Canada. Systematic and Applied Microbiology 31: 474–484.

    Article  CAS  PubMed  Google Scholar 

  • Sturz, A.V., R.D. Peters, M.R. Carter, J.B. Sanderson, B.G. Matheson, and B.R. Christie. 2005. Variation in antibiosis ability, against potato pathogens, of bacterial communities recovered from the endo- and exoroots of potato crops produced under conventional versus minimum tillage systems. Canadian Journal of Microbiology 51: 643–654.

    Article  CAS  PubMed  Google Scholar 

  • Tegg, R.S., Melian, L., C.R. Wilson, and S. Shabala. 2005. Plant cell growth and ion flux responses to the streptomycete phytotoxin thaxtomin-A: Calcium and hydrogen flux patterns revealed by the non-invasive MIFE technique. Plant Cell Physiol. pci069.

  • Wanner, L.A. 2007. A new strain of Streptomyces causing common scab in potato. Plant Disease 91: 352–359.

    Article  CAS  Google Scholar 

  • Wanner, L.A. 2009. A patchwork of Streptomyces species isolated from potato common scab lesions in North America. American Journal of Potato Research 86: 247–264.

    Article  Google Scholar 

  • Wanner, L.A., W.W. Kirk, and X.S. Qu. 2014. Field efficacy of nonpathogenic Streptomyces species against potato common scab. Journal of Applied Microbiology 116: 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Weinert, N., Y. Piceno, G.-C. Ding, R. Meincke, H. Heuer, G. Berg, M. Schloter, G. Andersen, and K. Smalla. 2011. PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS Microbiology Ecology 75: 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Wiggins, B.E., and L.L. Kinkel. 2005. Green manures and crop sequences influence potato diseases and pathogen inhibitory activity of indigenous streptomycetes. Phytopathology 95: 178–185.

    Article  CAS  PubMed  Google Scholar 

  • Zeng, W., W. Kirk, and J. Hao. 2012. Field management of Sclerotinia stem rot of soybean using biological control agents. Biological Control 60: 141–147.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by USDA-ARS project number 1275-21220-251-0OD. The author thanks Haimi Shiferaw, Brian Moravec, Stephanie Ray and Marshall Elson for technical support during parts of the last 12 years.

Sadly, Dr. Wanner passed away on 25 December 2014. The potato community will miss Leslie. She contributed greatly to our knowledge of Common Scab and Streptomycetes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Kirk.

Additional information

Added as Dr. Wanner sadly passed away on 25 Dec 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanner, L.A., Kirk, W.W. Streptomyces – from Basic Microbiology to Role as a Plant Pathogen. Am. J. Potato Res. 92, 236–242 (2015). https://doi.org/10.1007/s12230-015-9449-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-015-9449-5

Keywords

Navigation