Skip to main content
Log in

Zebra Chip Progression: From Inoculation of Potato Plants with Liberibacter to Development of Disease Symptoms in Tubers

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Zebra chip (ZC), a new and serious disease of potatoes, has caused millions of dollars in losses to the potato industry in the United States, Mexico, Central America, and New Zealand. The disease has been associated with the bacterium “Candidatus Liberibacter solanacearum” transmitted to potato by the potato psyllid, Bactericera cockerelli (Šulc). The most characteristic symptoms of ZC develop in potato tubers and include browning of vascular tissue concomitant with necrotic flecking of internal tissues and streaking of the medullary ray tissues, all of which can affect the entire tuber. Upon tuber frying, these symptoms become more pronounced and potato chips or fries processed from ZC-affected tubers show very dark blotches, stripes, or streaks, rendering them commercially unacceptable. Field experiments were conducted to determine how rapidly ZC symptoms develop in potato tubers following plant exposure to liberibacter-infective potato psyllids and to assess how the disease affects the overall potato yield and tuber processing quality over time. Results indicated that ZC symptoms developed in potato tubers 3 weeks following plant exposure to psyllids. Tuber development ceased upon the onset of ZC symptoms, resulting in substantial yield loss. Levels of tuber solids decreased as soon as initial disease symptoms were observed. In contrast, reducing sugar levels in tubers increased dramatically upon the onset of ZC symptoms, significantly affecting potato processing quality. This information, in combination with effective psyllid monitoring and control, will assist potato producers make harvest timing decisions following infestations of potato psyllids in their fields to minimize damage caused by ZC.

Resumen

Zebra chip (ZC), una enfermedad nueva y seria en papa, ha causado millones de dólares en pérdidas a la industria de la papa en los Estados Unidos, México, América Central y Nueva Zelanda. Se ha asociado a la enfermedad con la bacteria “Candidatus Liberibacter solanacearum”, transmitida a la papa por el psílido Bactericera cockerelli (Šulc). Los síntomas más característicos de ZC se desarrollan en los tubérculos de papa e incluyen pardeamiento del tejido vascular acompañado de pecas necróticas de tejidos internos y estriado de los tejidos medulares radiales, lo cual en su conjunto puede afectar al tubérculo completo. Estos síntomas se vuelven mas pronunciados en el freído, y las hojuelas de papa o las fritas (a la francesa) procesadas de tubérculos afectados por ZC muestran áreas muy oscuras, rayas, estriados, haciéndolas comercialmente inaceptables. Se condujeron experimentos de campo para determinar que tan rápido se desarrollan los síntomas de ZC en los tubérculos de papa después de la exposición de las plantas a psílidos infectivos por Liberibacter y para analizar cómo afecta la enfermedad el rendimiento total de papa y la calidad de proceso sobre el tiempo. Los resultados indicaron que los síntomas se desarrollaron en los tubérculos tres semanas después de la exposición de la planta a los psílidos. Se detuvo el desarrollo del tubérculo una vez que se establecieron los síntomas de ZC, lo cual resultó en una pérdida substancial de rendimiento. Disminuyeron los niveles de los sólidos en el tubérculo tan pronto como se observaron los síntomas iniciales de la enfermedad. En contraste, aumentaron dramáticamente los niveles de azúcares reductores en los tubérculos con el establecimiento de los síntomas, afectando significativamente la calidad de procesamiento. Esta información, en combinación con el monitoreo y control efectivo del psílido, respaldará a los productores de papa en sus decisiones de tiempo de cosecha después de las infestaciones por los psílidos en sus campos para minimizar el daño causado por ZC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Buchman, J.L., V.G. Sengoda, and J.E. Munyaneza. 2011. Vector transmission efficiency of liberibacter by Bactericera cockerelli (Hemiptera: Triozidae) in zebra chip potato disease: effects of psyllid life stage and inoculation access period. Journal of Economic Entomology 104: 1486–1495.

    Article  PubMed  Google Scholar 

  • Carter, W. 1939. Injuries to plants caused by insect toxins. Botanical Review 5: 273–326.

    Article  CAS  Google Scholar 

  • Crosslin, J.M., and J.E. Munyaneza. 2009. Evidence that the zebra chip disease and the putative causal agent can be maintained in potatoes by grafting and in vitro. American Journal of Potato Research 86: 183–187.

    Article  Google Scholar 

  • Crosslin, J.M., J.E. Munyaneza, J.K. Brown, and L.W. Liefting. 2010. Potato zebra chip disease: A phytopathological tale. Online. Plant Health Progress. doi:10.1094/PHP-2010-0317-01-RV.

  • Gao, F., J. Jifon, X. Yang, and T.-X. Liu. 2009. Zebra chip disease incidence on potato is influenced by timing of potato psyllid infestation, but not by the host plants on which they were reared. Insect Science 16: 399–408.

    Article  CAS  Google Scholar 

  • Gibson, S.I. 2004. Sugar and phytohormone response pathways: navigating a signaling network. Journal of Experimental Botany 55: 253–264.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, A.K., J.T. Trumble, R. Stouthamer, and T.D. Paine. 2008. A new huanglongbing species, ‘Candidatus Liberibacter psyllaurous’ found to infect tomato and potato, is vectored by the Psyllid Bactericera cockerelli (Sulc). Applied and Environmental Microbiology 74: 5862–5865.

    Article  PubMed  CAS  Google Scholar 

  • Li, W., J.A. Abad, R.D. French-Monar, J. Rascoe, A. Wen, N.C. Gudmestad, G.A. Secor, I.M. Lee, Y. Duan, and L. Levy. 2009. Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. Journal of Microbiological Methods 78: 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Liefting, L.W., Z.C. Rez-Egusquiza, G.R.G. Clover, and J.A.D. Anderson. 2008. A New ‘Candidatus Liberibacter’ Species in Solanum tuberosum in New Zealand. Plant Disease 92: 1474.

    Article  Google Scholar 

  • Liefting, L.W., B.S. Weir, S.R. Pennycook, and G.R.G. Clover. 2009. ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. International Journal of Systematic and Evolutionary Microbiology 59: 2274–2276.

    Article  PubMed  CAS  Google Scholar 

  • List, G.M. 1925. The tomato psyllid, Paratrioza cockerelli Sulc. Colorado State Entomologist Circular 47:16.

  • Miles, G.P., M.A. Samuel, J. Chen, E.L. Civerolo, and J.E. Munyaneza. 2010. Evidence that cell death is associated with zebra chip disease in potato tubers. American Journal of Potato Research 87: 337–349.

    Article  CAS  Google Scholar 

  • Munyaneza, J.E. 2010. Psyllids as vectors of emerging bacterial diseases of annual crops. Southwestern Entomologist 35: 417–477.

    Article  Google Scholar 

  • Munyaneza, J.E., J.M. Crosslin, and J.E. Upton. 2007a. Association of Bactericera cockerelli (Homoptera: Psyllidae) with “zebra chip”, a new potato disease in southwestern United States and Mexico. Journal of Economic Entomology 100: 656–663.

    Article  PubMed  CAS  Google Scholar 

  • Munyaneza, J.E., J.A. Goolsby, J.M. Crosslin, and J.E. Upton. 2007b. Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical Plant Science 59: 30–37.

    Google Scholar 

  • Munyaneza, J.E., J.L. Buchman, J.E. Upton, J.A. Goolsby, J.M. Crosslin, G. Bester, G.P. Miles, and V.G. Sengoda. 2008. Impact of different potato psyllid populations on zebra chip disease incidence, severity, and potato yield. Subtropical Plant Science 60: 27–37.

    Google Scholar 

  • Munyaneza, J.E., T.W. Fisher, V.G. Sengoda, S.F. Garczynski, A. Nissinen, and A. Lemmetty. 2010. Association of “Candidatus Liberibacter solanacearum” with the Carrot Psyllid, Trioza apicalis (Homoptera: Triozidae) in Europe. Journal of Economic Entomology 103: 1060–1070.

    Article  PubMed  CAS  Google Scholar 

  • Navarre, D.A., R. Shakya, J. Holden, and J.M. Crosslin. 2009. LC-MS analysis of phenolic compounds in tubers showing zebra chip symptoms. American Journal of Potato Research 86: 88–95.

    Article  CAS  Google Scholar 

  • Pastrik, K.H., and E. Maiss. 2000. Detection of Ralstonia solanacearum in potato tubers by polymerase chain reaction. Journal of Phytopathology 148: 619–626.

    Article  CAS  Google Scholar 

  • Pletsch, D.J. 1947. The potato psyllid Paratrioza cockerelli (Sulc) its biology and control. Montana Agricultural Experiment Station Bulletin 446.

  • Richards, B.L., and H.L. Blood. 1933. Psyllid yellows of the potato. Journal of Agricultural Research 46: 189–216.

    Google Scholar 

  • SAS Institute. 2003. SAS user’s guide: statistics, version 9.1. Cary, NC.

  • Secor, G.A., V. Rivera-Varas, J.A. Abad, I.-M. Lee, G.R.G. Clover, L.W. Liefting, X. Li, and S.H. De Boer. 2009. Association of ‘Candidatus Liberibacter solanacearum’ with Zebra Chip Disease of Potato Established by Graft and Psyllid Transmission, Electron Microscopy, and PCR. Plant Disease 93: 574–583.

    Article  CAS  Google Scholar 

  • Sengoda, V.G., J.E. Munyaneza, J.M. Crosslin, J.L. Buchman, and H.R. Pappu. 2010. Phenotypic and etiological differences between psyllid yellows and zebra chip diseases of potato. American Journal of Potato Research 87: 41–49.

    Article  Google Scholar 

  • Stark, J.C., and S.L. Love. 2003. Tuber Quality. In Potato Production Systems, ed. J.C. Stark and S.L. Love, 329–343. Moscow: University of Idaho Agricultural Communcations.

    Google Scholar 

  • Wallis, R.L. 1955. Ecological studies on the potato psyllid as a pest of potatoes. USDA Technical Bulletin 1107.

  • Zhang, Y.P., J.K. Uyemoto, and B.C. Kirkpatrick. 1998. A small-scale procedure for extracting nucleic acids from woody plants infected with various phytopathogens for PCR assay. Journal of Virological Methods 71: 45–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Jerry Gefre, Blaine Heilman, and Millie Heidt for their invaluable technical assistance. Financial support for this work was partially provided by Frito Lay, Inc., USDA-ARS State Cooperative Potato Research Program, Texas Department of Agriculture and Texas AgriLife, USDA-RAMP (Project # 2009-51101-05892) and USDA-SCRI (Project #2009-51181-20176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph E. Munyaneza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchman, J.L., Fisher, T.W., Sengoda, V.G. et al. Zebra Chip Progression: From Inoculation of Potato Plants with Liberibacter to Development of Disease Symptoms in Tubers. Am. J. Pot Res 89, 159–168 (2012). https://doi.org/10.1007/s12230-012-9238-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-012-9238-3

Keywords

Navigation