Skip to main content

Advertisement

Log in

Molecular Phylogenetic Studies of Caribbean Palms (Arecaceae) and Their Relationships to Biogeography and Conservation

  • Published:
The Botanical Review Aims and scope Submit manuscript

An Erratum to this article was published on 22 August 2008

Abstract

The Caribbean Islands are one of the world’s 34 biodiversity hotspots, remarkable for its biological richness and the high level of threat to its flora and fauna. The palms (family Arecaceae) are well represented in the West Indies, with 21 genera (three endemic) and 135 species (121 endemic). We provide an overview of phylogenetic knowledge of West Indian Palms, including their relationships within a plastid DNA-based phylogeny of the Arecaceae. We present new data used to reconstruct the phylogeny of tribe Cryosophileae, including four genera found in the West Indies, based on partial sequences of the low-copy nuclear genes encoding phosphoribulokinase (PRK) and subunit 2 of RNA polymerase II (RPB2). Recently published phylogenetic studies of tribe Cocoseae, based on PRK sequences, and tribes Cyclospatheae and Geonomateae, based on PRK and RPB2 sequences, also provide information on the phylogenetic relationships of West Indian palms. Results of these analyses show many independent origins of the West Indian Palm flora. These phylogenetic studies reflect the complex envolutionary history of the West Indies and no single biogeographical pattern emerges for these palms. The present day distributions of West Indian palms suggest complicated evolutionary interchange among islands, as well as between the West Indies and surrounding continents. We identified six palm lineages that deserve conservation priority. Species-level phylogenies are needed for Copernicia, Sabal, and Roystonea before we can build a more complete understanding of the origin and diversification of West Indian palms.

Resumen

Las Islas del Caribe constituyen uno de los 34 “hotspots” de biodiversidad del mundo, notables por su riqueza biológica y el alto grado de amenaza de su flora y fauna. La familia Arecaceae esta bien representada en Las Antillas con 21 géneros (tres endémicos) y 135 especies (121 endémicas). Presentamos una síntesis del conocimiento filogénetico de las palmas de Las Antillas incluyendo su posición dentro de la filogenia de la familia Arecaceae basada en ADN cloroplástico. Construímos una nueva filogenia para la tribu Cryosophileae, la cual incluye cuatro géneros de Las Antillas, basada en secuencias parciales de los genes nucleares de copia baja fosforibulokinasa (PRK) y la ARN polimerasa II (RPB2). Los estudios filogenéticos publicados de la tribu Cocoseae basada en secuencias de PRK, y de las tribus Cyclospatheae y Geonomateae basadas en secuencias de PRK y RPB2, también proveen información sobre las relaciones filogéneticas de las palmas de Las Antillas. Estos resultados indican el origen evolutivo múltiple de estas palmas. Los estudios filogenéticos reflejan la compleja historia evolutiva de Las Antillas y no existe un único patrón biogeográfico para las palmas de esta región. Las distribuciones actuales de las palmas de Las Antillas sugieren un complejo intercambio entre islas, así como estre islas y las masas continentales vecinas. Identificamos seis linajes de palmas que merecen prioridad de conservación. Se necesitan estudios filogéneticos para los géneros Copernicia, Sabal, y Roystonea con el fin de mejorar nuestro entendimiento sobre el origen y diversificación de las palmas de Las Antillas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Literature Cited

  • Asmussen, C. B. 1999a. Relationships of tribe Geonomeae (Arecaceae) based on plastid rps16 DNA sequences. Acta. Bot. Venez. 2:65–76.

    Google Scholar 

  • ———. 1999b. Toward a chloroplast DNA phylogeny of the tribe Geonomeae (Palmae). Mem New York Bot. Gar. 83:121–129.

    Google Scholar 

  • ——— & M. W. Chase. 2001. Coding and noncoding plastid DNA in palm family systematics. Amer. J. Bot. 88:1103–1117.

    Article  CAS  Google Scholar 

  • ———, W. J. Baker & J. Dransfield. 2000. Phylogeny of the palm family (Arecaceae) based on rps16 intron and trnL–trnF plastid DNA sequences. In: Wilson, K. L. & D. A. Morrison (eds) Systematics and evolution of monocots. CSIRO Publishing, Collingwood, Victoria, pp 525–537.

    Google Scholar 

  • ———, J. Dransfield, V. Dieckmann, A. S. Barfod, J. C. Pintaud & W. J. Baker. 2006. A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny. Bot. J. Linn. Soc. 151:15–38.

    Article  Google Scholar 

  • Bailey, L. H. 1938. The Calyptrogyne-Calyptronoma problem—the Manac palms. Gentes Herb 4:152–172.

    Google Scholar 

  • ———. 1940. Acoelorraphe vs. Paurotis—silver-saw palm. Gentes Herb. 4:361–365.

    Google Scholar 

  • Bailey, C. D., C. E. Hughes & S. A. Harris. 2004. Using RAPDs to identify DNA sequence loci for species level phylogeny reconstruction: an example from Leucaena (Fabaceae). Syst. Bot. 29:4–14.

    Article  Google Scholar 

  • Baker, W. J., C. B. Asmussen, S. Barrow, J. Dransfield & T. A. Hedderson. 1999. A phylogenetic study of the palm family (Palmae) based on chloroplast DNA sequences from the trnL–trnF region. Pl. Syst. Evol. 219:111–126.

    Article  CAS  Google Scholar 

  • ———, T. Hedderson & J. Dransfield. 2000a. Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Molec. Phyl. Evol. 14:195–217.

    Article  CAS  Google Scholar 

  • ———, ——— & ———. 2000b. Molecular phylogenetics of Calamus (Palmae) and related rattan genera based on 5SnrDNA spacer sequence data. Molec. Phyl. Evol. 14:218–231.

    Article  CAS  Google Scholar 

  • Balick, M. J. & H. Deck. 1990. Useful palms of the world: a synoptic bibliography. Columbia University Press, New York.

    Google Scholar 

  • Bayton, R. P. 2005. Borassus L. and the Borassoid palms: systematics and evolution. PhD thesis, University of Reading.

  • Beccari, O. 1912. The palms indigenous to Cuba II. Pomona Coll. J. Econ. Bot. 2:361–371.

    Google Scholar 

  • Bermingham, E. 1994. Historical biogeography of the bananaquit (Coereba flaveola) in the Caribbean region: a mitochondrial DNA assessment. Evolution 48:1041–1061.

    Article  Google Scholar 

  • Borchsenius, F. & R. Bernal. 1996. Aiphanes (Palmae). Flora Neotrop. 70:1–95.

    Google Scholar 

  • ———, H. B. Pedersen & H. Balslev. 1998. Manual to the palms of Ecuador. AAU Reports. Dept. of Systematic Botany, University of Aarhus, Aarhus.

    Google Scholar 

  • Borhidi, A. & O. Muñiz. 1983. Catálogo de plantas Cubanas amenazadas o extinguidas. Academia de Ciencias de Cuba, La Havana.

    Google Scholar 

  • ——— & ———. 1985. Adiciones al catálogo de palmas de Cuba. Acta Bot. Hung. 31:225–230.

    Google Scholar 

  • Brightsmith, D. J. 2005. Parrot nesting in southeastern Peru: seasonal patterns and keystone trees. Wilson Bull. 117:296–305.

    Article  Google Scholar 

  • Burret, M. 1930. Geonomeae Americanae. Bot. Jahrb. Syst. 63:123–170.

    Google Scholar 

  • Byg, A. & H. Balslev. 2006. Palms in indigenous and settler communities in southeastern Ecuador: farmers' perceptions and cultivation practices. Agroforest Systems. 67:147–158.

    Article  Google Scholar 

  • Chase, M. W., D. E. Soltis, P. S. Soltis, P. J. Rudall, M. F. Fay, W. J. Hahn, S. Sullivan, J. Joseph, M. Molvray, P. J. Kores, T. J. Givnich, K. J. Sytsema & J. C. Pires. 2000. Higher-level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In: Wilson, K. L. & D. A. Morrison (eds) Systematics and evolution of monocots. CSIRO Publishing, Collingwood, Victoria, pp 3–16.

    Google Scholar 

  • Columbus, C. 2001. The journal of Christopher Columbus (during his first voyage, 1492–93) and documents relating to the voyages of John Cabot and Gaspar Corte Real. Translated by C. R. Markham. Adamant Media Corporation.

  • Cuenca, A. & C. Asmussen-Lange. 2007. Phylogeny of the palm tribe Chamaedoreeae (Arecaceae) based on plastid DNA sequences. Syst. Bot. 32:250–263.

    Article  Google Scholar 

  • Dahlgren, B. & S. Glassman. 1963. A revision of the genus Copernicia. 2. West Indian species. Gentes Herb. 9:43–232.

    Google Scholar 

  • De Nevers, G. 1995. Notes on Panama palms. Proc. Calif. Acad. Sci. 48:329–342.

    Google Scholar 

  • Denton, A. L., B. L. McConaughy & B. D. Hall. 1998. Usefulness of RNA polymerase II coding sequences for estimation of green plant phylogeny. Molec. Biol. Evol. 15:1082–1085.

    PubMed  CAS  Google Scholar 

  • Donovan, S. K. & T. A. Jackson. 1994. Caribbean geology: an introduction. Univ. West Indies, Kingston.

  • Dransfield, J., N. W. Uhl, C. B. Asmussen, W. J. Baker, M. M. Harley & C. E. Lewis. 2005. A new phylogenetic classification of the palm family, Arecaceae. Kew Bull. 60:559–569.

    Google Scholar 

  • Drude, O. 1889. Palmae. In: Engler, A. & K. Prantl (eds) Dienaturlichen pflanzenfamilien vol 2 part 3. Wilhelm Engelmann, Leipzig, pp 1–93.

    Google Scholar 

  • Dugand, A. 1972. Las palmeras y el hombre. Cespedesia 1:31–103.

    Google Scholar 

  • Evans, R. J. 2001. Monograph of Colpothrinax. Palms 45:177–195.

    Google Scholar 

  • Francisco-Ortega, J., E. Santiago-Valentin, P. Acevedo-Rodriguez, C. Lewis, J. Pipoly III, A. W. Meerrow & M. Maunder. 2007. Seed plant genera endemic to the Caribbean Island biodiversity hotspot: a review and a molecular phylogenetic perspective. Bot. Rev. 73:183–234.

    Article  Google Scholar 

  • Fritsch, P. W. & T. D. McDowell. 2003. Biogeography and phylogeny of Caribbean plants-introduction. Syst. Bot. 28:376–377.

    Google Scholar 

  • Galeano-Garcés, G. 1986. Primer registro de dos generos de palms para la flora Colombiana. Mutisia 66:1–4.

    Google Scholar 

  • Gaut, B. S., S. V. Muse, W. D. Clark & M. T. Clegg. 1992. Relative rates of nucleotide substitution at the rbcL locus of the monocotyledonous plants. J. Molec. Evol. 35:292–303.

    Article  PubMed  CAS  Google Scholar 

  • Gentry, A. H. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America. Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann. Missouri Bot. Gard. 69:557–593.

    Article  Google Scholar 

  • Glassman, S. F. 1972. A revision of B. E. Dahlgren's index of American palms. Phanerog. Monogr. 6:1–256.

    Google Scholar 

  • ———. 1987. Revisions of the palm genus Syagrus Mart. and other selected genera in the Cocos Alliance. Illinois Biol. Monogr. 56:1–230.

    Google Scholar 

  • Govaerts, R. & J. Dransfield. 2005. World checklist of palms. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Graham, A. 2003. Historical phytogeography of the Greater Antilles. Brittonia. 55:357–383.

    Article  Google Scholar 

  • Grisebach, A. H. R. 1864. Palmae. Pp 513–523 in Flora of the British West Indian islands. Lovell Reeve and Company, London.

    Google Scholar 

  • Gunn, B. F. 2004. The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. Ann Missouri Bot. Gar. 91:505–522.

    Google Scholar 

  • Hahn, W. 1999. Molecular systematic studies of the Palmae. Mem New York Bot. Gar. 83:47–70.

    Google Scholar 

  • ———. 2002. A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences. Syst. Biol. 51:92–112.

    Article  PubMed  Google Scholar 

  • Harley, M. 2006. A summary of fossil records for Arecaceae. Bot. J. Lin. Soc. 151:39–67.

    Article  Google Scholar 

  • Hawkes, A. D. 1949. A checklist of palms of Cuba. Phytologia 3:145–149.

    Google Scholar 

  • Hedges, S. B. 2006. Paleogeography of the Antilles and origin of West Indian terrestrial vertebrates. Ann. Missouri Bot. Gard. 93:231–244.

    Article  Google Scholar 

  • Henderson, A. 1999. A phylogenetic analysis of the Euterpeinae (Palmae: Arecoideae: Areceae) based on morphology and anatomy. Brittonia 51:106–113.

    Article  Google Scholar 

  • ———. 2002. Phenetic and phylogenetic analysis of Reinhardtia (Palmae). Amer. J. Bot. 89:1491–1502.

    Article  Google Scholar 

  • ———. 2005. A multivariate study of Calyptrogyne (Palmae). Syst. Bot. 30:60–83.

    Article  Google Scholar 

  • ——— & M. Balick. 1991. Attalea crassispatha, a rare and endemic Haitian palm. Brittonia 43:189–194.

    Article  Google Scholar 

  • ——— & G. Galeano. 1996. Euterpe, Prestoea, and Neonicholsonia (Palmae: Euterpeinae). Flora Neotrop. 72:1–90.

    Google Scholar 

  • ———, ——— & R. Bernal. 1995. Field guide to the palms of the Americas. Princeton University Press, Princeton.

    Google Scholar 

  • Hooker, J. D. 1883. Palmae. In: Bentham, G. & J. D. Hooker (eds) Genera plantarum vol 3. L. Reeve, London, pp 870–948.

    Google Scholar 

  • Horst, O. H. 1997. The utility of palms in the cultural landscape of the Dominican Republic. Principes 41:15–28.

    Google Scholar 

  • Hughes, C. E., R. J. Eastwood & C. D. Bailey. 2006. From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction. Philos. Trans. Ser. B 361:211–225.

    Article  CAS  Google Scholar 

  • IUCN. 2001. Categories and Criteria (version 3.1). IUCN, Gland, Switzerland [http://www.redlist.org/info/categories_criteria2001.html].

  • Kahn, F. & J. J. De Granville. 1992. Palms in forest ecosystems of Amazonia. Ecological studies. Springer-Verlag, Berlin.

    Google Scholar 

  • León, H. 1939. Contribución al estudio de las palmas de Cuba. III. Género Coccothrinax. Mem. Soc. Cub. Hist. Nat. 13:107–156.

    Google Scholar 

  • ———. 1944. Contribution to the study of Cuban palms, VII. The genus Calyptrogyne in Cuba. Contr. Ocas. Mus. Hist. Nat. del Colegio “De la Salle”. 3:1–12.

    Google Scholar 

  • Levi-Strauss, C. 1952. The use of wild plants in tropical South America. Econ. Bot. 6:252–270.

    Google Scholar 

  • Lewis, C. E. & J. J. Doyle. 2001. Phylogenetic utility of the nuclear gene malate synthase in the palm family (Arecaceae). Molec. Phyl. Evol. 19:409–420.

    Article  CAS  Google Scholar 

  • ——— & ———. 2002 Phylogenetic analysis of tribe Areceae (Arecaceae) using two low-copy nuclear genes. Pl. Syst. Evol. 236:1–17.

    Article  CAS  Google Scholar 

  • ——— & N. Martinez. 2000. Identity of the Hyophorbe palms at the botanical garden of Cienfuegos, Cuba. Palms 44:93–97.

    Google Scholar 

  • ———, W. Baker & C. B. Asmussen. 2000. DNA and palm evolution. Palms 44:19–24.

    Google Scholar 

  • Loo, A. H. B., J. Dransfield, M. W. Chase & W. J. Baker. 2006. Low-copy nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). Molec. Phyl. Evol. 39:598–618.

    Article  CAS  Google Scholar 

  • McDowell, T. & B. Bremer. 1998. Phylogeny, diversity, and distribution of Exostema (Rubiaceae): implications of morphological and molecular analyses. Pl. Syst. Evol. 212:215–246.

    Article  Google Scholar 

  • Moore, H. A. 1957. Reinhardtia. Gentes Herb. 8:541–576.

    Google Scholar 

  • ———. 1973. The major groups of palms and their distribution. Gentes Herb. 11:27–141.

    Google Scholar 

  • Mort, M. & D. Crawford. 2004. The continuing research: low-copy nuclear sequences for lower-level plant molecular phylogenetic studies. Taxon 53:257–261.

    Article  Google Scholar 

  • Moya, C., J. Martínez-Fortún, J. Ludgardo, J. García & E. Rodríguez. 1989. Las Copernicias (Yareyes y Jatas) en Sancti Spíritus. Palmas endemicas que necesitan proteccion. Revista Jard. Bot. Nac. Univ. Habana 10:49–62.

    Google Scholar 

  • ———, A. Leiva, J. Valdes, J. Martinez-Fortun & A. Hernandez. 1991. Gaussia spirituana Moya et Leiva, sp. Nov.: Una nueva palma de Cuba Central. Revista Jard. Bot. Nac. Univ. Habana 12:15–19.

    Google Scholar 

  • Muller, J. 1981. Fossil pollen record of extant angiosperms. Bot. Rev. 47:1–142.

    Article  Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca & J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.

    Article  PubMed  CAS  Google Scholar 

  • Nickerson, J. & G. Drouin. 2004. The sequence of the largest subunit of RNA polymerase II is a useful marker for inferring seed plant phylogeny. Molec. Phyl. Evol. 31:403–415.

    Article  CAS  Google Scholar 

  • Norup, M. V., J. Dransfield, M. W. Chase, A. S. Barfod, E. S. Fernando & W. J. Baker. 2006. Homoplasious character combinations and generic delimitations: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). Amer. J. Bot. 93:1065–1080.

    Article  CAS  Google Scholar 

  • Oxelman, B., N. Yoshikawa, B. L. McConaughy, J. Luo, A. L. Denton & B. D. Hall. 2004. RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Molec. Phyl. Evol. 32:462–479.

    Article  CAS  Google Scholar 

  • Peres, C. A. 1994. Composition, density, and fruiting phenology of arborescent palms in an Amazonian terra firme forest. Biotropica 26:285–294.

    Article  Google Scholar 

  • Pfeil, B. E., C. L. Brubaker, L. A. Craven & M. D. Crisp. 2004. Paralogy and orthology in the Malvaceae rpb2 gene family: investigation of gene duplication in Hibiscus. Molec. Bio. Evol. 21:1428–1437.

    Article  CAS  Google Scholar 

  • Poinar, G. Jr. 2002a. Fossil palm flowers in Dominican and Mexican amber. Bot. J. Lin. Soc. 138:57–61.

    Article  Google Scholar 

  • ———. 2002b. Fossil palm flowers in Dominican and Baltic amber. Bot. J. Lin. Soc. 139:361–367.

    Article  Google Scholar 

  • ——— & J. Santiago-Blay. 1997. Paleodoris lattini gen. n. sp. n. a fossil palm bug (Hemiptera: Thaumastocoridae: Xylastodorinae) in Dominican amber, with habits discernible by comparative functional morphology. Entomol. Scandinavica 28:307–310.

    Google Scholar 

  • Popp, M. & B. Oxelman. 2001. Inferring the history of the polyploidy Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Molec. Phyl. Evol. 20:474–481.

    Article  CAS  Google Scholar 

  • Quero, H. & R. W. Read. 1986. A revision of the palm genus Gaussia. Syst Bot. 11:145–154.

    Article  Google Scholar 

  • Read, R. W. 1969. Some notes on Pseudophoenix and a key to the species. Principes 10:55–61.

    Google Scholar 

  • ———. 1975. The genus Thrinax (Palmae: Coryphoideae). Smithsonian Contr. Bot. 19:1–98.

    Google Scholar 

  • ———. 1979. Palms of the lesser antilles. Department of Botany, Smithsonian Institution, Washington DC.

    Google Scholar 

  • ———. 1988. Utilization of indigenous palms in the Caribbean (in relation to their abundance). Adv. Econ. Bot. 6:137–143.

    Google Scholar 

  • ———, T. A. Zanoni & M. Mejia. 1987. Reinhardtia paiewonskiana (Palmae), a new species for the West Indies. Brittonia 39:20–25.

    Article  Google Scholar 

  • Roncal, J., J. Francisco-Ortega, C. B. Asmussen & C. E. Lewis. 2005a. Molecular phylogenetics of tribe Geonomeae (Arecaceae) using nuclear DNA sequences of phosphoribulokinase and RNA polymerase II. Syst. Bot. 30:275–283.

    Article  Google Scholar 

  • ———, S. Zona & C. E. Lewis. 2005b. Calyptrogyne plumeriana: a new name for a familiar palm. Palms 49:149–150.

    Google Scholar 

  • Salzman, V. T. & W. S. Judd. 1995. A revision of the greater antillean species of Bactris (Bactridinae: arecaceae). Brittonia 47:345–371.

    Article  Google Scholar 

  • Sanders, R. W. 1991. Cladistics of Bactris (Palmae): survey of characters and refutation of Burret's classification. Selbyana 12:105–133.

    Google Scholar 

  • Sang, T. 2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Molec. Biol. 37:121–147.

    Article  CAS  Google Scholar 

  • Santiago-Valentin, E. & R. G. Olmstead. 2004. Historical biogeography of Caribbean plants: introduction to current knowledge and possibilities from a phylogenetic perspective. Taxon 53:299–319.

    Article  Google Scholar 

  • Schlüter, P. M., T. F. Stuessy & H. F. Paulus. 2005. Making the first step: practical considerations for the isolation of low-copy nuclear sequence markers. Taxon 54:766–770.

    Google Scholar 

  • Schubart, C. D., R. Diesel & S. B. Hedges. 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393:363–365.

    Article  CAS  Google Scholar 

  • Small, R., R. Cronn & J. Wendel. 2004. L.A.S Johnson Review No.2. Use of nuclear genes for phylogeny reconstruction in plants. Austr. Syst. Bot. 17:145–170.

    Article  CAS  Google Scholar 

  • Smith, M. L., S. B. Hedges, W. Buck, A. Hemphill, S. Inchaustegui, M. A. Ivie, D. Martina, M. Maunder & J. Francisco-Ortega. 2004. Caribbean islands. In: Mittermeier, R. A., R. R. Gil, M. Hoffman, J. Pilgrim, T. Brooks, C. G. Mittermeier, J. Lamoreux & G. A. B. da Fonseca (eds) Hotspots revisited: Earth's biologically richest and most threatened terrestrial ecoregions. CEMEX, Mexico DF, pp. 112–118.

    Google Scholar 

  • Svenning, J. C. 2001. On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot. Rev. 67:1–53.

    Article  Google Scholar 

  • Syring, J., A. Willyard, A. Cronn & A. Liston. 2005. Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. Amer. J. Bot. 92:2086–2100.

    Article  Google Scholar 

  • Terborgh, J., R. B. Foster & P. Nuñez. 1996. Tropical tree communities: a test of the nonequilibrium hypothesis. Ecology 77:561–567.

    Article  Google Scholar 

  • Thomas, M. M., N. C. Garwood, W. J. Baker, S. A. Henderson, S. J. Russell, D. R. Hodel & R. M. Bateman. 2006. Molecular phylogeny of the palm genus Chamaedorea, based on low copy nuclear genes PRK and RPB2. Molec. Phyl. Evol. 38:398–415.

    Article  CAS  Google Scholar 

  • Trénel, P., M. Gustafsson, W. J. Baker, C. B. Asmussen-Lange, J. Dransfield & F. Borchsenius. 2007. Mid-tertiary dispersal, not Gondwanan vicariance explains distribution patters in the wax palm subfamily (Ceroxyloideae: Arecaceae). Molec. Phyl. Evol. 45:272–288.

    Article  CAS  Google Scholar 

  • Uhl, N. W. & J. Dransfield. 1987. Genera palmarum. A classification of palms based on the work of Harold E. Moore, Jr. Allen Press, Lawrence.

    Google Scholar 

  • ———, ———, J. I. Davis, M. A. Luckow, K. S. Hansen & J. J. Doyle. 1995. Phylogenetic relationships among palms: cladistic analyses of morphological and chloroplast DNA restriction site variation. In: Rudall, P. J., P. J. Cribb, F. Cutler & C. J. Humphries (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Richmond, pp 623–661.

    Google Scholar 

  • von Martius, C. F. 1824. Palmarum familia ejusque genera. Lindaueri, Munich.

    Google Scholar 

  • Vormisto, J. 2002. Making and marketing chambira hammocks and bags in the village of Brillo Nuevo, Northeastern Peru. Econ. Bot. 56:27–40.

    Article  Google Scholar 

  • Wallace, A. R. 1853. Palm trees of the Amazon and their uses. John van Voorst, London.

    Google Scholar 

  • Wessels Boer, J. G. 1968. The Geonomoid palms. Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk. Twede Reeks deel LVIII, No. 1, Amsterdam.

  • Wilson, M., B. Gaut & M. Clegg. 1990. Chloroplast DNA evolves slowly in the palm family (Arecaceae). Molec. Biol. Evol. 7:303–314.

    PubMed  CAS  Google Scholar 

  • Zona, S. 1990. A monograph of Sabal (Arecaceae: Coryphoideae). Aliso 12:583–666.

    Google Scholar 

  • ———. 1995. A revision of Calyptronoma (Arecaceae). Principes 39:140–151.

    Google Scholar 

  • ———. 1996. Roystonea (Arecaceae: Arecoideae). Flora Neotrop. 71:1–36.

    Google Scholar 

  • ———. 2002. A revision of Pseudophoenix. Palms 46:19–38.

    Google Scholar 

  • ———, R. Verdecia, A. Leiva-Sánchez, C. E. Lewis & M. Maunder. 2007. Conservation status of West Indian palms (Arecaceae). Oryx. 41:300–305.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Javier Francisco-Ortega, Fabian Michelangeli, and Mike Maunder for their comments on earlier versions of this manuscript. Financial support for phylogenetic studies developed by the authors came from the Tropical Biology Program at Florida International University (TBP-FIU), Fairchild Tropical Botanic Garden, the Stanley Smith Horticultural Trust, the International Palm Society, the Danish National Science Research Council, the South Florida Palm Society, the Marina Riley Scholarship, and the Botanical Society of America. This is contribution 145 of TBP-FIU. We acknowledge Trénel et al. for making accessible online their phylogenetic trees prior to publication and Sandy Namoff for GenBank assistance with the Cryosophileae. NSF program CREST-CATEC of the University of Puerto Rico Rio Piedras funded JR’s participation in the IX Latin American Botanical Conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julissa Roncal.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12229-008-9015-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roncal, J., Zona, S. & Lewis, C.E. Molecular Phylogenetic Studies of Caribbean Palms (Arecaceae) and Their Relationships to Biogeography and Conservation. Bot. Rev 74, 78–102 (2008). https://doi.org/10.1007/s12229-008-9005-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-008-9005-9

Keywords

Navigation