Skip to main content

Advertisement

Log in

Fine-scale effect of environmental variation and distance from watercourses on pteridophyte assemblage structure in the western Amazon

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Defining the factors that regulate the geographic distribution and abundance of plants in natural systems is still a major challenge. This challenge is even greater when non-arboreal plants are used as a model organism, as they have historically received less attention than trees. In this study, we evaluated how the richness and composition of pteridophyte species varies over a gradient of distance from small watercourses in the Amazon and how the environment can explain these variations. We installed eight sampling units consisting of six transects, 2 m × 150 m each, along a gradient of distance from the banks of small watercourses in the western Brazilian Amazon, totalling 1.44 ha sampled area. In these transects, we sampled all pteridophytes and counted bamboo culms (an especially important element in western Amazon forests), measured the litter layer thickness and analysed the soil chemical and granulometric properties. Higher species richness of pteridophytes was observed near the bank of the watercourses in relation to the most distant portions. Species composition also differed between portions closer and farther from watercourses and was influenced by soil factors, especially those related to nutrient availability. The results indicate that distance from the watercourses and variation in nutrient availability along this gradient are important predictors of variation in the structure of pteridophyte assemblages in tropical forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ACRE (2006) Zoneamento Ecológico-Econômico do Acre Fase II – Documento Síntese – Escala 1:250.000. 354. [in Portuguese]

  • Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  • Baer A, Wheeler JK, Pittermann J (2020) Limited hydraulic adjustments drive the acclimation response of Pteridium aquilinum to variable light. Ann Bot (Oxford) 125:691–700

    Article  CAS  Google Scholar 

  • Choy-Sin H, Suan WY (1974) Photosynthesis and respiration of ferns in relation to their habitat. Amer Fern J 64:40–48

    Article  Google Scholar 

  • Climate-Data (2016) Climate-Data.org. Available at https://pt.climate-data.org

  • Colwell RK (2005) EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5. Available at http://purl.oclc.org/estimates

  • R Core Team (2018) R: A language and environment for statistical computing. R foundation for Statistical Computing: Vienna. Available at https://www.R-project.org

    Google Scholar 

  • Damgaard C, Merlin A, Bonis A (2017) Plant colonization and survival along a hydrological gradient: demography and niche dynamics. Oecologia 183:201–210

    Article  PubMed  Google Scholar 

  • Drucker DP, Costa FRC, Magnusson WE (2008) How wide is the riparian zone of small streams in tropical forests? A test with terrestrial herbs. J Trop Ecol 24:65–74

    Article  Google Scholar 

  • Engemann K, Sandel B, Enquist BJ, et al (2016) Patterns and drivers of plant functional group dominance across the Western Hemisphere: a macroecological re-assessment based on a massive botanical dataset. Bot J Linn Soc 180:141–160

    Article  Google Scholar 

  • Fourcade Y, Besnard AG, Secondi J (2018) Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Global Ecol Biogeogr 27:245–256

    Article  Google Scholar 

  • Greer GK (1993) The influence of soil topography and spore-rain density on gender expression in gametophyte populations of the homosporous fern Aspidotis densa. Amer Fern J 83:54–59

    Article  Google Scholar 

  • Griscom BW, Ashton PMS (2003) Bamboo control of forest succession: Guadua sarcocarpa in Southeastern Peru. Forest Ecol Managem 175:445–454

    Article  Google Scholar 

  • Heltshe JF, Forrester NE (1983) Estimating species richness using the Jackknife procedure. Biometrics 39:1–11

    Article  CAS  PubMed  Google Scholar 

  • Higgins M, Ruokolainen K, Tuomisto H et al (2011) Geological control of floristic composition in Amazonian forests. J Biogeogr 38:2136–2149

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang E, Chen Y, Fang M et al (2021) Environmental drivers of plant distributions at global and regional scales. Global Ecol Biogeogr 30:697–709

    Article  Google Scholar 

  • Kato M (1993) Biogeography of ferns: dispersal and vicariance. J Biogeogr 20:265–274

    Article  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical Ecology. Elsevier: Amsterdam

    Google Scholar 

  • Lima RAF, Rother DC, Muler AE et al (2012) Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol Conservation 147:32–39

    Article  Google Scholar 

  • Marimon-Junior BH, Hay JD (2008) A new instrument for measurement and collection of quantitative samples of the litter layer in forests. Forest Ecol Managem 255:2244–2250

    Article  Google Scholar 

  • Mcadam SAM, Brodribb TJ (2013) Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought. New Phytol 198:429–441

    Article  CAS  PubMed  Google Scholar 

  • Mori GB, Poorter L, Schietti J, Piedade MTF (2021) Edaphic characteristics drive functional traits distribution in Amazonian floodplain forests. Pl Ecol 1–12

  • Moulatlet G, Emilio T (2011) Protocolo coleta de solos. INPA: Manaus [in Portuguese]

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Friendly M et al (2018) vegan: community ecology package. Available at https://CRAN.R-project.org/package=vegan

  • Page CN (2002) Ecological strategies in fern evolution: A neopteridological overview. Rev Palaeobot Palynol 119:1–33

    Article  Google Scholar 

  • Prado J, Hirai RY, Moran RC (2017) Fern and lycophyte flora of Acre state, Brazil. Biota Neotrop (Campinas) 17: e20170369

    Google Scholar 

  • Ruokolainen K, Linna A, Tuomisto H (1997) Use of Melastomataceae and pteridophytes for revealing phytogeographical patterns in Amazonian rain forests. J Trop Ecol 13:243–256

    Article  Google Scholar 

  • Schietti J, Emilio T, Rennó CD et al (2013) Vertical distance from drainage drives floristic composition changes in an Amazonian rainforest. Pl Ecol Divers 7:1–13

    Google Scholar 

  • Schuettpelz E, Schneider H, Huiet L et al (2007) A molecular phylogeny of the fern family Pteridaceae: Assessing overall relationships and the affinities of previously unsampled genera. Molec Phylogen Evol 44:1172–1185

    Article  CAS  Google Scholar 

  • Senyanzobe JMV, Mulei JM, Bizuru E, Nsengimuremyi C (2020) Impact of Pteridium aquilinum on vegetation in Nyungwe Forest, Rwanda. Heliyon 6: e04806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira M (2005) A floresta aberta com bambu no sudoeste da Amazônia: padrões e processos em múltiplas escalas. EDUFAC: Rio Branco [in Portuguese]

    Google Scholar 

  • Smith M, Nelson BW (2011) Fire favours expansion of bamboo-dominated forests in the south-west Amazon. J Trop Ecol 27:59–64

    Article  Google Scholar 

  • Souza MB (1996) Anfíbios anuros da Reserva Florestal Humaitá, Estado do Acre, Brasil. UFPR: Curitiba [in Portuguese]

    Google Scholar 

  • Tuomisto H (2010) Floristic variation of western Amazonian forests. Science 299:241–244

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Kalliola R et al (1995) Dissecting Amazonian Biodiversity. Science 296:63–66

    Article  Google Scholar 

  • Vaughan IP, Ormerod SJ (2005) The continuing challenges of testing species distribution models. J Appl Ecol 42:720–730

    Article  Google Scholar 

  • Winter SLS, Sylvestre LS, Prado J (2011) O gênero Adiantum (Pteridaceae) no estado do Rio de Janeiro, Brasil. Rodriguésia 62:663–681

    Article  Google Scholar 

  • Wylie RB (1948) The dominant role of the epidermis in leaves of Adiantum. Amer J Bot 35:465–473

    Article  Google Scholar 

  • Zaninovich SC, Montti LF, Alvarez MF, Gatti MG (2017) Replacing trees by bamboos: changes from canopy to soil organic carbon storage. Forest Ecol Managem 400:208–217

    Article  Google Scholar 

  • Zuquim G, Costa FRC, Prado J, Tuomisto H (2008) Guide to the ferns and lycophytes of REBIO Uatumã – Central Amazonia. INPA: Manaus

    Google Scholar 

  • Zuquim G, Tuomisto H, Jones MM et al (2014) Predicting environmental gradients with fern species composition in Brazilian Amazonia. J Veg Sci 25:1195–1207

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Federal University of Acre (UFAC) for their support in conducting the research. We thank the Soil and Plant Analysis Laboratory (LASP) for conducting soil analysis. We also thank the team of the Forest Ecology Laboratory (LABEFLOR – UFAC) and the field assistants José da Silva and Wellington da Silva, who collect data. Thanks go to Elaine Lopes and Alex Oliveira for the elaboration of Fig. 1. We thank the Kalle Ruokolainen for an English language check and editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique Augusto Mews.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 306 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, J.G., Vieira, T.B. & Mews, H.A. Fine-scale effect of environmental variation and distance from watercourses on pteridophyte assemblage structure in the western Amazon. Folia Geobot 56, 69–80 (2021). https://doi.org/10.1007/s12224-021-09390-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-021-09390-y

Keywords

Navigation