Skip to main content

Advertisement

Log in

Environmental and anthropogenic drivers of coniferous species distribution in Mediterranean drylands from North West Algeria

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Understanding the influence of environmental and anthropogenic factors on the distribution of species is essential for developing management in endangered ecosystems. We studied the current abundance and distribution patterns of vegetation along environmental and anthropogenic gradients in North West Algeria. We focused on the four dominant coniferous species (Pinus halepensis, Tetraclinis articulata, Juniperus oxycedrus and Juniperus phoenicea). We compiled inventories of species composition, together with 12 environmental variables in 177 sampling plots throughout the study area. Multivariate (detrended correspondence analysis) and univariate (Huisman–Olf–Fresco models) analyses were applied to predict the presence of coniferous species and to explore species-environment relationships with ecological and anthropogenic variables. We found that species segregated along environmental gradients, mainly altitude and related climatic variables (temperatures). Anthropogenic variables, like fire frequency and overgrazing, were secondary, but also significant. Juniperus phoenicea was located exclusively in coastal areas. Tetraclinis articulata had a wide distribution and was linked to coastal and inland areas, but did not arrive at more continental areas (colder and drier), where it was replaced with J. oxycedrus. P. halepensis displayed the widest distribution and was practically present throughout the study area, but its maximum abundance was in continental areas. These results indicate a possible shift of species’ potential distribution in future climatic change. Species like J. oxycedrus would be seriously threatened by niche narrowing, while Pinus halepensis and T. articulata could expand to a certain extent. Our results provide important inputs for optimizing the management plans of coniferous species by considering environmental factors key modulators of vegetation distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acevedo P, Melo-Ferreira J, Real R, Alves PC (2012) Past, present and future distributions of an Iberian Endemic, Lepus granatensis: ecological and evolutionary clues from species distribution models. PLOS One 7:e51529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angert AL, Crozier LG, Rissler LJ, Gilman SE, Tewksbury JJ, Chunco AJ (2011) Do species’ traits predict recent shifts at expanding range edges? Ecol Letters 14:677–689

    Google Scholar 

  • Ayache F (2007) Les Résineux dans la región de Tlemcen: aspect écologique et cartographie. Master thesis. Universite Abou Bekr Belkaid de Tlemcen

  • Baeza MJ, Valdecantos A, Alloza JA, Vallejo VR (2007) Human disturbance and environmental factors as drivers of long-term post-fire regeneration patterns in Mediterranean forests. J Veg Sci 18:243–252

    Google Scholar 

  • Benito Garzón M, Sánchez de Dios R, Sainz Ollero H (2008) Effects of climate change on the distribution of Iberian tree species. Appl Veg Sci 11:169–178

    Google Scholar 

  • Boden S, Pyttel P, Eastaugh C (2010) Impacts of climate change on the establishment, distribution, growth and mortality of Swiss stone pine (Pinus cembra L.). iForest 3:82–85

  • Braun Blanquet J (1952) Phytosociologie appliquée. Communication S.I.G.M.A 116, pp 156–161

  • Calvo L, Baeza MJ, Marcos E, Santana VM, Papanastasis VP (2012) Post-fire management of shrublands. In Moreira F (ed.) Post-fire management and restoration of Southern European forests. Springer, Dordrecht, pp 293–319

    Google Scholar 

  • Canty A, Ripley B (2017) boot: Bootstrap R (S-Plus) Functions. R package version 1.3–20. Available at https://cran.r-project.org/web/packages/boot/index.html (Accessed May 2017)

    Google Scholar 

  • Carmel Y, Kadmon R (1999) Effects of grazing and topography on long-term vegetation changes in a Mediterranean ecosystem in Israel. Pl Ecol 145:243–254

    Google Scholar 

  • Chergui B, Fahd S, Santos X, Pausas JG (2018) Socioeconomic factors drive fire-regime variability in the Mediterranean Basin. Ecosystems 21:619–628

    Google Scholar 

  • Connell, J. H. 1978. Diversity in tropical rain forest and coral reefs. Science 199:1302–1310

    CAS  PubMed  Google Scholar 

  • Dahmani-Megrerouche M (2002) The holm-oak (Quercus rotundifolia) in Algeria: climate–vegetation relations. Phytocoenologia 32:129–141

    Google Scholar 

  • Davies KW, Bates JD, Miller RF (2007) Environmental and vegetation relationships of the Artemisia tridentata spp. wyomingensis alliance. J Arid Environm 70:478–494

    Google Scholar 

  • Debrach J (1953) Note sur les climats du Maroc occidental. Maroc Mérid 32:1122–1134

    CAS  Google Scholar 

  • DGFT (2011)Données statistiques des forets de 1990 à 2011. Direction Générale des Forêts de Tlemcen

  • Esteve-Selma MA, Martínez-Fernández J, Hernández-García I, Montávez JP, López-Hernández JJ, Calvo JF (2012) Potential effects of climatic change on the distribution of Tetraclinis articulata, an endemic tree from arid Mediterranean ecosystems. Clim Change 113:663–678

    Google Scholar 

  • Fennane M, Barbero M (1984) Le thuya de Berberie au Maroc: apergu phytogeographique et ecologique. Bull Inst Sci Rabat 8:115–134

    Google Scholar 

  • Franklin J (2010) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hadjadj Aoual S (1995) Peuplements du thuya de berbérie en Algérie : phytoécologie syntaxonomie, potentialités sylvicoles. Thèse Doct Es Sci Univ Aix – Marseille

  • Hadjadj Aoual S (2009) Effet des facteurs environnementaux sur les premiers stades de la régénération naturelle de Tetraclinis articulata (Vahl, Master) en Oranie (Algérie). Ecol Medit 35:20 – 31

    Google Scholar 

  • Hannah L, Flint L, Syphard AD, Moritz M A, Buckley LB, McCullough IM (2014) Fine-grain modeling of species’ response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol Evol 29:390–397

    PubMed  Google Scholar 

  • Hill MO, Gauch H (1980) Correspondence analysis, an improved ordination technique. Vegetatio 42:1122–1134

    Google Scholar 

  • Hörsch B (2003) Modelling the spatial distribution of montane and subalpine forests in the central Alps using digital elevation models. Ecol Modelling 168:267–282

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. In Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and II to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland

    Google Scholar 

  • Jansen F, Oksanen J (2013) How to model species responses along ecological gradients–Huisman–Olff–Fresco models revisited. J Veg Sci 24:1108–111

    Google Scholar 

  • Kadik L (2011) Phytosociologie et phytoécologie des forêts à Pin d’Alep: etage bioclimatique du semi aride algérien. Editions Universitaires Europeenes. Sarrebruck, Germany

    Google Scholar 

  • Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011) Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Global Change Biol 17:565–579

    Google Scholar 

  • Le Houerou HN (1980) L’impact de l’homme et de ses animaux sur la forêt méditerranéenne. Forêt Medit 2:31–44

    Google Scholar 

  • Lloret F, Vilà M (2003) Diversity patterns of plant functional types in relation to fire regime and previous land use in Mediterranean woodlands. J Veg Sci 14:387–398

    Google Scholar 

  • López Hernández J, Calvo J, Esteve Selma MA, Ramírez Díaz L (1995) Respuesta de Tetraclinis articulata (Vahl) Masters al fuego. Ecología 9:213–221

  • Màrcia E, Verkaik I, Lloret F, Espelta JM (2006) Recruitment and growth decline in Pinus halepensis populations after recurrent wildfires in Catalonia (NE Iberian Peninsula). Forest Ecol Managem 231:47–54

  • Médail Q (2003) Ecologie et biogégraphie des forêts du bassin méditerrannéen. Elsevier. Paris, France

    Google Scholar 

  • Meddour-Sahar O (2015) Wildfires in Algeria: problems and challenges. iForest e1–e9

  • Nicolaci A, Travaglini D, Menguzzato G, Nocentini S, Veltri A, Iovino F (2015) Ecological and anthropogenic drivers of Calabrian pine (Pinus nigra J.F. Arn. ssp. laricio (Poiret) Maire) distribution in the Sila mountain range. iForest 8:497–508

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. Available at https://cran.r-project.org/web/packages/vegan/index.html (accessed March 2017)

  • Orlóci L (1978) Multivariate analysis in vegetation research. 2nd ed. Junk, The Hague, Netherlands

    Google Scholar 

  • Papanastasis VP (2004) Traditional vs contemporary management of Mediterranean vegetation: the case of the island of Crete. J Biol Res 1:39–46

    Google Scholar 

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    PubMed  Google Scholar 

  • Perevolotsky A, Ettinger E, Schwartz-Tzachor R, Yonatan R (2002) Management of fuel breaks in the Israeli Mediterranean Ecosystem: the case of Ramat Hanadiv Park. J Medit Ecol 3:13–22

    Google Scholar 

  • Pliscoff P, Luebert F, Hilger HH, Guisan A (2014) Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: a test with plants in an arid environment. Ecol Modelling 288:166–177

    Google Scholar 

  • Quezel P (2000) Réflexion sur l’évolution de la flore et de la végétation au Maghreb Méditerranéen. Ibis Press. Edit, Paris, France

    Google Scholar 

  • Quezel P (2004) Large-scale post-glacial distribution of vegetation structures in the Mediterranean Region. In Mazzoleni S, di Pasquale G, Mulligan M, di Martino P and Rego F (eds) Recent dynamics of the Mediterranean vegetation and landscape. John Wiley and Sons Ltd, England

    Google Scholar 

  • Quezel P, Santa S (1962–63) Nouvelle flore de l’Algerie. Centre National de la Recherche Scientifique, Paris

  • RNE (2000) Rapport national sur l’état et l’avenir e l’environnement. Ministre de l’Amenagement du territoire et de l’environment, Algerie

    Google Scholar 

  • Rupprecht F, Oldeland J, Finckh M (2011) Modelling potential distribution of the threatened tree species Juniperus oxycedrus: How to evaluate the predictions of different modelling approaches? J Veg Sci 22:647–659

    Google Scholar 

  • Sanders T, Pitman R, Broadmeadow M (2014) Species-specific climate response of oaks (Quercus spp.) under identical environmental conditions. iForest 7:61–69

  • Santana V M, Baeza M J, Marrs R H, Vallejo V R (2010) Old-field secondary succession in SE Spain: Can fire divert it? Pl Ecol 211:337–349

    Google Scholar 

  • Santana VM, Baeza MJ, Maestre FT (2012) Seedling establishment along post-fire succession in Mediterranean shrublands dominated by obligate seeders. Acta Oecol 39:51–60

    Google Scholar 

  • Schwilk DW, Keeley JE (2012) A plant distribution shift: temperature, drought or past disturbance? PLOS One 7:e31173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serra-Diaz JM, Keenan TF, Ninyerola M, Sabaté S, Gracia C, Lloret F (2013) Geographical patterns of congruence and incongruence between correlative species distribution models and a process-based ecophysiological growth model. J Biogeogr 40:1928–1938

    Google Scholar 

  • Sternberg M, Shoshany M (2001) Influence of slope aspect on Mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol Res 16:335–345

    Google Scholar 

  • Syphard AD, Franklin J (2010) Species traits affect the performance of species distribution models for plants in southern California. J Veg Sci 21:177–189

    Google Scholar 

  • Taïqui L, Martín C (1997) Eléments historiques d'analyse écologique des paysages montagneux du Rif Occidental (Maroc). Mediterránea. Ser Estud Biol 16:23–35

    Google Scholar 

  • Thuiller W, Araújo MB, Lavorel S (2003) Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. J Veg Sci 14:669–680

    Google Scholar 

  • Urbieta IR, García L V, Zavala MA, Marañón T (2011). Mediterranean pine and oak distribution in southern Spain: Is there a mismatch between regeneration and adult distribution? J Veg Sci 22:18–31

    Google Scholar 

  • van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effect on community similarity. Vegetatio 39:97–114

    Google Scholar 

  • van der Plas F, Manning P, Soliveres S, et al. (2016) Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc Natl Acad Sci USA 113:3557–3562

    PubMed  Google Scholar 

  • White F (1983) The vegetation of Africa. UNESCO. Paris, France

    Google Scholar 

  • Wilkinson D M (1999) The disturbing history of intermediate disturbance. Oikos 84:145–147

    Google Scholar 

  • Zohry A (2005) Migration without borders: North Africa as a reserve of cheap labour for Europe. Migration without Borders Series, UNESCO, Paris, France

    Google Scholar 

Download references

Acknowledgements

This work has been conducted as part of the Research Integrated Action Programme TASSILI ‘History of woody vegetation and associated biodiversity conservation in north west Algeria’ (2007, No. 07MDU703). Faouzia Ayache was supported through a MAEC-AECID grant from the Spanish Agency for International Cooperation and Development. V.M. Santana was supported by a ‘Beatriu de Pinós’ grant (2014BP-B00056) Generalitat de Cataluña and M.J. Baeza was supported by the SURVIVE-2 (CGL2015-69773-C2-2-P) project. We would also like to acknowledge all the workers of the Regional Forest Service of Tlemcen for providing environmental data and for their technical support on field trips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Baeza.

Additional information

Dedicated to Faouzia Ayache (Nedroma, 1976–2016)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayache, F., Santana, V.M. & Baeza, M.J. Environmental and anthropogenic drivers of coniferous species distribution in Mediterranean drylands from North West Algeria. Folia Geobot 55, 15–27 (2020). https://doi.org/10.1007/s12224-020-09362-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-020-09362-8

Keywords

Navigation